Solve for x
x\geq \frac{26}{9}
Graph
Share
Copied to clipboard
x-2\left(x-1\right)\leq 8x-24
Multiply both sides of the equation by 8, the least common multiple of 8,4. Since 8 is positive, the inequality direction remains the same.
x-2x+2\leq 8x-24
Use the distributive property to multiply -2 by x-1.
-x+2\leq 8x-24
Combine x and -2x to get -x.
-x+2-8x\leq -24
Subtract 8x from both sides.
-9x+2\leq -24
Combine -x and -8x to get -9x.
-9x\leq -24-2
Subtract 2 from both sides.
-9x\leq -26
Subtract 2 from -24 to get -26.
x\geq \frac{-26}{-9}
Divide both sides by -9. Since -9 is negative, the inequality direction is changed.
x\geq \frac{26}{9}
Fraction \frac{-26}{-9} can be simplified to \frac{26}{9} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}