Solve for x
x\geq \frac{27}{14}
Graph
Share
Copied to clipboard
6x-9\geq 2x\times \frac{2}{3}
Multiply both sides of the equation by 48, the least common multiple of 8,16,24,3. Since 48 is positive, the inequality direction remains the same.
6x-9\geq \frac{2\times 2}{3}x
Express 2\times \frac{2}{3} as a single fraction.
6x-9\geq \frac{4}{3}x
Multiply 2 and 2 to get 4.
6x-9-\frac{4}{3}x\geq 0
Subtract \frac{4}{3}x from both sides.
\frac{14}{3}x-9\geq 0
Combine 6x and -\frac{4}{3}x to get \frac{14}{3}x.
\frac{14}{3}x\geq 9
Add 9 to both sides. Anything plus zero gives itself.
x\geq 9\times \frac{3}{14}
Multiply both sides by \frac{3}{14}, the reciprocal of \frac{14}{3}. Since \frac{14}{3} is positive, the inequality direction remains the same.
x\geq \frac{9\times 3}{14}
Express 9\times \frac{3}{14} as a single fraction.
x\geq \frac{27}{14}
Multiply 9 and 3 to get 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}