Solve for c
c=\frac{4x^{4}\left(7x^{5}-5x+35y\right)}{35}
x\neq 0
Graph
Share
Copied to clipboard
20x^{4}x-28x^{4}x^{5}+35c=y\times 140x^{4}
Multiply both sides of the equation by 140x^{4}, the least common multiple of 7,5,4x^{4}.
20x^{5}-28x^{4}x^{5}+35c=y\times 140x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
20x^{5}-28x^{9}+35c=y\times 140x^{4}
To multiply powers of the same base, add their exponents. Add 4 and 5 to get 9.
-28x^{9}+35c=y\times 140x^{4}-20x^{5}
Subtract 20x^{5} from both sides.
35c=y\times 140x^{4}-20x^{5}+28x^{9}
Add 28x^{9} to both sides.
35c=28x^{9}-20x^{5}+140yx^{4}
The equation is in standard form.
\frac{35c}{35}=\frac{4x^{4}\left(7x^{5}-5x+35y\right)}{35}
Divide both sides by 35.
c=\frac{4x^{4}\left(7x^{5}-5x+35y\right)}{35}
Dividing by 35 undoes the multiplication by 35.
c=\frac{4x^{9}}{5}+4yx^{4}-\frac{4x^{5}}{7}
Divide 4\left(35y-5x+7x^{5}\right)x^{4} by 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}