Solve for m
m=\frac{x}{65}
x\neq 0
Solve for x
x=65m
m\neq 0
Graph
Share
Copied to clipboard
x+5m\left(-3\right)=50m
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5m.
x-15m=50m
Multiply 5 and -3 to get -15.
x-15m-50m=0
Subtract 50m from both sides.
x-65m=0
Combine -15m and -50m to get -65m.
-65m=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\frac{-65m}{-65}=-\frac{x}{-65}
Divide both sides by -65.
m=-\frac{x}{-65}
Dividing by -65 undoes the multiplication by -65.
m=\frac{x}{65}
Divide -x by -65.
m=\frac{x}{65}\text{, }m\neq 0
Variable m cannot be equal to 0.
x+5m\left(-3\right)=50m
Multiply both sides of the equation by 5m.
x-15m=50m
Multiply 5 and -3 to get -15.
x=50m+15m
Add 15m to both sides.
x=65m
Combine 50m and 15m to get 65m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}