Solve for x, y
x=35
y=28
Graph
Share
Copied to clipboard
4x=5y
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
x=\frac{1}{4}\times 5y
Divide both sides by 4.
x=\frac{5}{4}y
Multiply \frac{1}{4} times 5y.
\frac{5}{4}y+y=63
Substitute \frac{5y}{4} for x in the other equation, x+y=63.
\frac{9}{4}y=63
Add \frac{5y}{4} to y.
y=28
Divide both sides of the equation by \frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{5}{4}\times 28
Substitute 28 for y in x=\frac{5}{4}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=35
Multiply \frac{5}{4} times 28.
x=35,y=28
The system is now solved.
4x=5y
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
4x-5y=0
Subtract 5y from both sides.
4x-5y=0,x+y=63
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&-5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\63\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&-5\\1&1\end{matrix}\right))\left(\begin{matrix}4&-5\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&1\end{matrix}\right))\left(\begin{matrix}0\\63\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&-5\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&1\end{matrix}\right))\left(\begin{matrix}0\\63\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\1&1\end{matrix}\right))\left(\begin{matrix}0\\63\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\right)}&-\frac{-5}{4-\left(-5\right)}\\-\frac{1}{4-\left(-5\right)}&\frac{4}{4-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}0\\63\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{5}{9}\\-\frac{1}{9}&\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}0\\63\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\times 63\\\frac{4}{9}\times 63\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\28\end{matrix}\right)
Do the arithmetic.
x=35,y=28
Extract the matrix elements x and y.
4x=5y
Consider the first equation. Multiply both sides of the equation by 20, the least common multiple of 5,4.
4x-5y=0
Subtract 5y from both sides.
4x-5y=0,x+y=63
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x-5y=0,4x+4y=4\times 63
To make 4x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 4.
4x-5y=0,4x+4y=252
Simplify.
4x-4x-5y-4y=-252
Subtract 4x+4y=252 from 4x-5y=0 by subtracting like terms on each side of the equal sign.
-5y-4y=-252
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
-9y=-252
Add -5y to -4y.
y=28
Divide both sides by -9.
x+28=63
Substitute 28 for y in x+y=63. Because the resulting equation contains only one variable, you can solve for x directly.
x=35
Subtract 28 from both sides of the equation.
x=35,y=28
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}