Solve for x (complex solution)
x=\frac{55+5\sqrt{53879}i}{3}\approx 18.333333333+386.864173695i
x=\frac{-5\sqrt{53879}i+55}{3}\approx 18.333333333-386.864173695i
Graph
Share
Copied to clipboard
\frac{x}{5}+\frac{4x}{5\times 8}+\frac{x}{5}\times \frac{5}{3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Multiply \frac{4x}{5} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{5}+\frac{x}{2\times 5}+\frac{x}{5}\times \frac{5}{3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Cancel out 4 in both numerator and denominator.
\frac{x}{5}+\frac{x}{2\times 5}+\frac{x\times 5}{5\times 3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Multiply \frac{x}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{5}+\frac{x}{2\times 5}+\frac{x}{3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Cancel out 5 in both numerator and denominator.
\frac{8}{15}x+\frac{x}{2\times 5}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Combine \frac{x}{5} and \frac{x}{3} to get \frac{8}{15}x.
\frac{8}{15}x+\frac{x}{2\times 5}+\left(\frac{1}{10}x\right)^{2}+1500=x
Multiply \frac{4}{5} and \frac{1}{8} to get \frac{1}{10}.
\frac{8}{15}x+\frac{x}{2\times 5}+\left(\frac{1}{10}\right)^{2}x^{2}+1500=x
Expand \left(\frac{1}{10}x\right)^{2}.
\frac{8}{15}x+\frac{x}{2\times 5}+\frac{1}{100}x^{2}+1500=x
Calculate \frac{1}{10} to the power of 2 and get \frac{1}{100}.
\frac{8}{15}x+\frac{x}{10}+\frac{1}{100}x^{2}+1500=x
Multiply 2 and 5 to get 10.
\frac{19}{30}x+\frac{1}{100}x^{2}+1500=x
Combine \frac{8}{15}x and \frac{x}{10} to get \frac{19}{30}x.
\frac{19}{30}x+\frac{1}{100}x^{2}+1500-x=0
Subtract x from both sides.
-\frac{11}{30}x+\frac{1}{100}x^{2}+1500=0
Combine \frac{19}{30}x and -x to get -\frac{11}{30}x.
\frac{1}{100}x^{2}-\frac{11}{30}x+1500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{11}{30}\right)±\sqrt{\left(-\frac{11}{30}\right)^{2}-4\times \frac{1}{100}\times 1500}}{2\times \frac{1}{100}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{100} for a, -\frac{11}{30} for b, and 1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{11}{30}\right)±\sqrt{\frac{121}{900}-4\times \frac{1}{100}\times 1500}}{2\times \frac{1}{100}}
Square -\frac{11}{30} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{11}{30}\right)±\sqrt{\frac{121}{900}-\frac{1}{25}\times 1500}}{2\times \frac{1}{100}}
Multiply -4 times \frac{1}{100}.
x=\frac{-\left(-\frac{11}{30}\right)±\sqrt{\frac{121}{900}-60}}{2\times \frac{1}{100}}
Multiply -\frac{1}{25} times 1500.
x=\frac{-\left(-\frac{11}{30}\right)±\sqrt{-\frac{53879}{900}}}{2\times \frac{1}{100}}
Add \frac{121}{900} to -60.
x=\frac{-\left(-\frac{11}{30}\right)±\frac{\sqrt{53879}i}{30}}{2\times \frac{1}{100}}
Take the square root of -\frac{53879}{900}.
x=\frac{\frac{11}{30}±\frac{\sqrt{53879}i}{30}}{2\times \frac{1}{100}}
The opposite of -\frac{11}{30} is \frac{11}{30}.
x=\frac{\frac{11}{30}±\frac{\sqrt{53879}i}{30}}{\frac{1}{50}}
Multiply 2 times \frac{1}{100}.
x=\frac{11+\sqrt{53879}i}{\frac{1}{50}\times 30}
Now solve the equation x=\frac{\frac{11}{30}±\frac{\sqrt{53879}i}{30}}{\frac{1}{50}} when ± is plus. Add \frac{11}{30} to \frac{i\sqrt{53879}}{30}.
x=\frac{55+5\sqrt{53879}i}{3}
Divide \frac{11+i\sqrt{53879}}{30} by \frac{1}{50} by multiplying \frac{11+i\sqrt{53879}}{30} by the reciprocal of \frac{1}{50}.
x=\frac{-\sqrt{53879}i+11}{\frac{1}{50}\times 30}
Now solve the equation x=\frac{\frac{11}{30}±\frac{\sqrt{53879}i}{30}}{\frac{1}{50}} when ± is minus. Subtract \frac{i\sqrt{53879}}{30} from \frac{11}{30}.
x=\frac{-5\sqrt{53879}i+55}{3}
Divide \frac{11-i\sqrt{53879}}{30} by \frac{1}{50} by multiplying \frac{11-i\sqrt{53879}}{30} by the reciprocal of \frac{1}{50}.
x=\frac{55+5\sqrt{53879}i}{3} x=\frac{-5\sqrt{53879}i+55}{3}
The equation is now solved.
\frac{x}{5}+\frac{4x}{5\times 8}+\frac{x}{5}\times \frac{5}{3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Multiply \frac{4x}{5} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{5}+\frac{x}{2\times 5}+\frac{x}{5}\times \frac{5}{3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Cancel out 4 in both numerator and denominator.
\frac{x}{5}+\frac{x}{2\times 5}+\frac{x\times 5}{5\times 3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Multiply \frac{x}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{5}+\frac{x}{2\times 5}+\frac{x}{3}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Cancel out 5 in both numerator and denominator.
\frac{8}{15}x+\frac{x}{2\times 5}+\left(\frac{4}{5}x\times \frac{1}{8}\right)^{2}+1500=x
Combine \frac{x}{5} and \frac{x}{3} to get \frac{8}{15}x.
\frac{8}{15}x+\frac{x}{2\times 5}+\left(\frac{1}{10}x\right)^{2}+1500=x
Multiply \frac{4}{5} and \frac{1}{8} to get \frac{1}{10}.
\frac{8}{15}x+\frac{x}{2\times 5}+\left(\frac{1}{10}\right)^{2}x^{2}+1500=x
Expand \left(\frac{1}{10}x\right)^{2}.
\frac{8}{15}x+\frac{x}{2\times 5}+\frac{1}{100}x^{2}+1500=x
Calculate \frac{1}{10} to the power of 2 and get \frac{1}{100}.
\frac{8}{15}x+\frac{x}{10}+\frac{1}{100}x^{2}+1500=x
Multiply 2 and 5 to get 10.
\frac{19}{30}x+\frac{1}{100}x^{2}+1500=x
Combine \frac{8}{15}x and \frac{x}{10} to get \frac{19}{30}x.
\frac{19}{30}x+\frac{1}{100}x^{2}+1500-x=0
Subtract x from both sides.
-\frac{11}{30}x+\frac{1}{100}x^{2}+1500=0
Combine \frac{19}{30}x and -x to get -\frac{11}{30}x.
-\frac{11}{30}x+\frac{1}{100}x^{2}=-1500
Subtract 1500 from both sides. Anything subtracted from zero gives its negation.
\frac{1}{100}x^{2}-\frac{11}{30}x=-1500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{100}x^{2}-\frac{11}{30}x}{\frac{1}{100}}=-\frac{1500}{\frac{1}{100}}
Multiply both sides by 100.
x^{2}+\left(-\frac{\frac{11}{30}}{\frac{1}{100}}\right)x=-\frac{1500}{\frac{1}{100}}
Dividing by \frac{1}{100} undoes the multiplication by \frac{1}{100}.
x^{2}-\frac{110}{3}x=-\frac{1500}{\frac{1}{100}}
Divide -\frac{11}{30} by \frac{1}{100} by multiplying -\frac{11}{30} by the reciprocal of \frac{1}{100}.
x^{2}-\frac{110}{3}x=-150000
Divide -1500 by \frac{1}{100} by multiplying -1500 by the reciprocal of \frac{1}{100}.
x^{2}-\frac{110}{3}x+\left(-\frac{55}{3}\right)^{2}=-150000+\left(-\frac{55}{3}\right)^{2}
Divide -\frac{110}{3}, the coefficient of the x term, by 2 to get -\frac{55}{3}. Then add the square of -\frac{55}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-150000+\frac{3025}{9}
Square -\frac{55}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-\frac{1346975}{9}
Add -150000 to \frac{3025}{9}.
\left(x-\frac{55}{3}\right)^{2}=-\frac{1346975}{9}
Factor x^{2}-\frac{110}{3}x+\frac{3025}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{3}\right)^{2}}=\sqrt{-\frac{1346975}{9}}
Take the square root of both sides of the equation.
x-\frac{55}{3}=\frac{5\sqrt{53879}i}{3} x-\frac{55}{3}=-\frac{5\sqrt{53879}i}{3}
Simplify.
x=\frac{55+5\sqrt{53879}i}{3} x=\frac{-5\sqrt{53879}i+55}{3}
Add \frac{55}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}