Solve for β
\beta =\frac{x\left(41x-3680\right)}{40}
x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{-2\sqrt{410\beta +846400}+1840}{41}\text{, }&\beta \neq 0\text{ and }\beta \geq -\frac{84640}{41}\\x=\frac{2\sqrt{410\beta +846400}+1840}{41}\text{, }&\beta \geq -\frac{84640}{41}\end{matrix}\right.
Graph
Share
Copied to clipboard
xx-40\beta =40x\times 92-x\times 40x
Multiply both sides of the equation by 40x, the least common multiple of 40,x.
x^{2}-40\beta =40x\times 92-x\times 40x
Multiply x and x to get x^{2}.
x^{2}-40\beta =40x\times 92-x^{2}\times 40
Multiply x and x to get x^{2}.
x^{2}-40\beta =3680x-x^{2}\times 40
Multiply 40 and 92 to get 3680.
x^{2}-40\beta =3680x-40x^{2}
Multiply -1 and 40 to get -40.
-40\beta =3680x-40x^{2}-x^{2}
Subtract x^{2} from both sides.
-40\beta =3680x-41x^{2}
Combine -40x^{2} and -x^{2} to get -41x^{2}.
\frac{-40\beta }{-40}=\frac{x\left(3680-41x\right)}{-40}
Divide both sides by -40.
\beta =\frac{x\left(3680-41x\right)}{-40}
Dividing by -40 undoes the multiplication by -40.
\beta =\frac{41x^{2}}{40}-92x
Divide x\left(3680-41x\right) by -40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}