Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{\left(2x-3\right)^{2}}-\frac{3x}{\left(-2x-3\right)\left(2x-3\right)}
Factor 4x^{2}-12x+9. Factor 9-4x^{2}.
\frac{x\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)^{2}}-\frac{3x\left(-1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-3\right)^{2} and \left(-2x-3\right)\left(2x-3\right) is \left(2x+3\right)\left(2x-3\right)^{2}. Multiply \frac{x}{\left(2x-3\right)^{2}} times \frac{2x+3}{2x+3}. Multiply \frac{3x}{\left(-2x-3\right)\left(2x-3\right)} times \frac{-\left(2x-3\right)}{-\left(2x-3\right)}.
\frac{x\left(2x+3\right)-3x\left(-1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)^{2}}
Since \frac{x\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)^{2}} and \frac{3x\left(-1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+3x+6x^{2}-9x}{\left(2x+3\right)\left(2x-3\right)^{2}}
Do the multiplications in x\left(2x+3\right)-3x\left(-1\right)\left(2x-3\right).
\frac{8x^{2}-6x}{\left(2x+3\right)\left(2x-3\right)^{2}}
Combine like terms in 2x^{2}+3x+6x^{2}-9x.
\frac{8x^{2}-6x}{8x^{3}-12x^{2}-18x+27}
Expand \left(2x+3\right)\left(2x-3\right)^{2}.