Solve for x
x\leq \frac{10}{21}
Graph
Quiz
Algebra
5 problems similar to:
\frac { x } { 4 } - \frac { 2 } { 3 } \geq \frac { 4 x - 3 } { 2 }
Share
Copied to clipboard
3x-8\geq 6\left(4x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 4,3,2. Since 12 is positive, the inequality direction remains the same.
3x-8\geq 24x-18
Use the distributive property to multiply 6 by 4x-3.
3x-8-24x\geq -18
Subtract 24x from both sides.
-21x-8\geq -18
Combine 3x and -24x to get -21x.
-21x\geq -18+8
Add 8 to both sides.
-21x\geq -10
Add -18 and 8 to get -10.
x\leq \frac{-10}{-21}
Divide both sides by -21. Since -21 is negative, the inequality direction is changed.
x\leq \frac{10}{21}
Fraction \frac{-10}{-21} can be simplified to \frac{10}{21} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}