Solve for x
x\geq -\frac{16}{11}
Graph
Quiz
Algebra
5 problems similar to:
\frac { x } { 4 } - \frac { 1 - x } { 3 } \leq 1 + \frac { 3 x } { 2 }
Share
Copied to clipboard
3x-4\left(1-x\right)\leq 12+6\times 3x
Multiply both sides of the equation by 12, the least common multiple of 4,3,2. Since 12 is positive, the inequality direction remains the same.
3x-4+4x\leq 12+6\times 3x
Use the distributive property to multiply -4 by 1-x.
7x-4\leq 12+6\times 3x
Combine 3x and 4x to get 7x.
7x-4\leq 12+18x
Multiply 6 and 3 to get 18.
7x-4-18x\leq 12
Subtract 18x from both sides.
-11x-4\leq 12
Combine 7x and -18x to get -11x.
-11x\leq 12+4
Add 4 to both sides.
-11x\leq 16
Add 12 and 4 to get 16.
x\geq -\frac{16}{11}
Divide both sides by -11. Since -11 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}