Solve for x
x=20
Graph
Share
Copied to clipboard
\frac{x}{256}-\frac{1}{\left(-2\right)^{6}}=-\left(-\frac{1}{16}\right)
Calculate 4 to the power of 4 and get 256.
\frac{x}{256}-\frac{1}{64}=-\left(-\frac{1}{16}\right)
Calculate -2 to the power of 6 and get 64.
\frac{x}{256}-\frac{4}{256}=-\left(-\frac{1}{16}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 256 and 64 is 256. Multiply \frac{1}{64} times \frac{4}{4}.
\frac{x-4}{256}=-\left(-\frac{1}{16}\right)
Since \frac{x}{256} and \frac{4}{256} have the same denominator, subtract them by subtracting their numerators.
\frac{x-4}{256}=\frac{1}{16}
The opposite of -\frac{1}{16} is \frac{1}{16}.
\frac{1}{256}x-\frac{1}{64}=\frac{1}{16}
Divide each term of x-4 by 256 to get \frac{1}{256}x-\frac{1}{64}.
\frac{1}{256}x=\frac{1}{16}+\frac{1}{64}
Add \frac{1}{64} to both sides.
\frac{1}{256}x=\frac{4}{64}+\frac{1}{64}
Least common multiple of 16 and 64 is 64. Convert \frac{1}{16} and \frac{1}{64} to fractions with denominator 64.
\frac{1}{256}x=\frac{4+1}{64}
Since \frac{4}{64} and \frac{1}{64} have the same denominator, add them by adding their numerators.
\frac{1}{256}x=\frac{5}{64}
Add 4 and 1 to get 5.
x=\frac{5}{64}\times 256
Multiply both sides by 256, the reciprocal of \frac{1}{256}.
x=\frac{5\times 256}{64}
Express \frac{5}{64}\times 256 as a single fraction.
x=\frac{1280}{64}
Multiply 5 and 256 to get 1280.
x=20
Divide 1280 by 64 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}