Evaluate
\frac{3x^{2}-6x-2}{3x\left(3x+1\right)}
Factor
\frac{\left(x-\left(-\frac{\sqrt{15}}{3}+1\right)\right)\left(x-\left(\frac{\sqrt{15}}{3}+1\right)\right)}{x\left(3x+1\right)}
Graph
Share
Copied to clipboard
\frac{x\times 3x}{3x\left(3x+1\right)}-\frac{2\left(3x+1\right)}{3x\left(3x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+1 and 3x is 3x\left(3x+1\right). Multiply \frac{x}{3x+1} times \frac{3x}{3x}. Multiply \frac{2}{3x} times \frac{3x+1}{3x+1}.
\frac{x\times 3x-2\left(3x+1\right)}{3x\left(3x+1\right)}
Since \frac{x\times 3x}{3x\left(3x+1\right)} and \frac{2\left(3x+1\right)}{3x\left(3x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-6x-2}{3x\left(3x+1\right)}
Do the multiplications in x\times 3x-2\left(3x+1\right).
\frac{3\left(x-\left(-\frac{1}{3}\sqrt{15}+1\right)\right)\left(x-\left(\frac{1}{3}\sqrt{15}+1\right)\right)}{3x\left(3x+1\right)}
Factor the expressions that are not already factored in \frac{3x^{2}-6x-2}{3x\left(3x+1\right)}.
\frac{\left(x-\left(-\frac{1}{3}\sqrt{15}+1\right)\right)\left(x-\left(\frac{1}{3}\sqrt{15}+1\right)\right)}{x\left(3x+1\right)}
Cancel out 3 in both numerator and denominator.
\frac{\left(x-\left(-\frac{1}{3}\sqrt{15}+1\right)\right)\left(x-\left(\frac{1}{3}\sqrt{15}+1\right)\right)}{3x^{2}+x}
Expand x\left(3x+1\right).
\frac{\left(x-\left(-\frac{1}{3}\sqrt{15}\right)-1\right)\left(x-\left(\frac{1}{3}\sqrt{15}+1\right)\right)}{3x^{2}+x}
To find the opposite of -\frac{1}{3}\sqrt{15}+1, find the opposite of each term.
\frac{\left(x+\frac{1}{3}\sqrt{15}-1\right)\left(x-\left(\frac{1}{3}\sqrt{15}+1\right)\right)}{3x^{2}+x}
The opposite of -\frac{1}{3}\sqrt{15} is \frac{1}{3}\sqrt{15}.
\frac{\left(x+\frac{1}{3}\sqrt{15}-1\right)\left(x-\frac{1}{3}\sqrt{15}-1\right)}{3x^{2}+x}
To find the opposite of \frac{1}{3}\sqrt{15}+1, find the opposite of each term.
\frac{x^{2}+x\left(-\frac{1}{3}\right)\sqrt{15}-x+\frac{1}{3}\sqrt{15}x+\frac{1}{3}\sqrt{15}\left(-\frac{1}{3}\right)\sqrt{15}+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Apply the distributive property by multiplying each term of x+\frac{1}{3}\sqrt{15}-1 by each term of x-\frac{1}{3}\sqrt{15}-1.
\frac{x^{2}+x\left(-\frac{1}{3}\right)\sqrt{15}-x+\frac{1}{3}\sqrt{15}x+\frac{1}{3}\times 15\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{x^{2}-x+\frac{1}{3}\times 15\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Combine x\left(-\frac{1}{3}\right)\sqrt{15} and \frac{1}{3}\sqrt{15}x to get 0.
\frac{x^{2}-x+\frac{15}{3}\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Multiply \frac{1}{3} and 15 to get \frac{15}{3}.
\frac{x^{2}-x+5\left(-\frac{1}{3}\right)+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Divide 15 by 3 to get 5.
\frac{x^{2}-x+\frac{5\left(-1\right)}{3}+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Express 5\left(-\frac{1}{3}\right) as a single fraction.
\frac{x^{2}-x+\frac{-5}{3}+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Multiply 5 and -1 to get -5.
\frac{x^{2}-x-\frac{5}{3}+\frac{1}{3}\sqrt{15}\left(-1\right)-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\frac{x^{2}-x-\frac{5}{3}-\frac{1}{3}\sqrt{15}-x-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{x^{2}-2x-\frac{5}{3}-\frac{1}{3}\sqrt{15}-\left(-\frac{1}{3}\sqrt{15}\right)+1}{3x^{2}+x}
Combine -x and -x to get -2x.
\frac{x^{2}-2x-\frac{5}{3}-\frac{1}{3}\sqrt{15}+\frac{1}{3}\sqrt{15}+1}{3x^{2}+x}
Multiply -1 and -\frac{1}{3} to get \frac{1}{3}.
\frac{x^{2}-2x-\frac{5}{3}+1}{3x^{2}+x}
Combine -\frac{1}{3}\sqrt{15} and \frac{1}{3}\sqrt{15} to get 0.
\frac{x^{2}-2x-\frac{5}{3}+\frac{3}{3}}{3x^{2}+x}
Convert 1 to fraction \frac{3}{3}.
\frac{x^{2}-2x+\frac{-5+3}{3}}{3x^{2}+x}
Since -\frac{5}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x-\frac{2}{3}}{3x^{2}+x}
Add -5 and 3 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}