Solve for x
x\geq -\frac{19}{28}
Graph
Share
Copied to clipboard
7x-24\leq 63x+14
Multiply both sides of the equation by 21, the least common multiple of 3,7. Since 21 is positive, the inequality direction remains the same.
7x-24-63x\leq 14
Subtract 63x from both sides.
-56x-24\leq 14
Combine 7x and -63x to get -56x.
-56x\leq 14+24
Add 24 to both sides.
-56x\leq 38
Add 14 and 24 to get 38.
x\geq \frac{38}{-56}
Divide both sides by -56. Since -56 is negative, the inequality direction is changed.
x\geq -\frac{19}{28}
Reduce the fraction \frac{38}{-56} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}