Solve for x
x\geq \frac{9}{16}
Graph
Quiz
Algebra
5 problems similar to:
\frac { x } { 3 } \leq \frac { 1 } { 4 } + \frac { 3 x - 2 } { 5 }
Share
Copied to clipboard
20x\leq 15+12\left(3x-2\right)
Multiply both sides of the equation by 60, the least common multiple of 3,4,5. Since 60 is positive, the inequality direction remains the same.
20x\leq 15+36x-24
Use the distributive property to multiply 12 by 3x-2.
20x\leq -9+36x
Subtract 24 from 15 to get -9.
20x-36x\leq -9
Subtract 36x from both sides.
-16x\leq -9
Combine 20x and -36x to get -16x.
x\geq \frac{-9}{-16}
Divide both sides by -16. Since -16 is negative, the inequality direction is changed.
x\geq \frac{9}{16}
Fraction \frac{-9}{-16} can be simplified to \frac{9}{16} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}