Solve for x
x = -\frac{24}{5} = -4\frac{4}{5} = -4.8
Graph
Share
Copied to clipboard
2x+6=3\left(-x\right)-18
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2x+6-3\left(-x\right)=-18
Subtract 3\left(-x\right) from both sides.
2x+6-3\left(-1\right)x=-18
Multiply -1 and 3 to get -3.
2x+6+3x=-18
Multiply -3 and -1 to get 3.
5x+6=-18
Combine 2x and 3x to get 5x.
5x=-18-6
Subtract 6 from both sides.
5x=-24
Subtract 6 from -18 to get -24.
x=\frac{-24}{5}
Divide both sides by 5.
x=-\frac{24}{5}
Fraction \frac{-24}{5} can be rewritten as -\frac{24}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}