Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}=\frac{\sqrt{5}}{\sqrt{10}}
Rationalize the denominator of \frac{x}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{x\sqrt{2}}{3\times 2}=\frac{\sqrt{5}}{\sqrt{10}}
The square of \sqrt{2} is 2.
\frac{x\sqrt{2}}{6}=\frac{\sqrt{5}}{\sqrt{10}}
Multiply 3 and 2 to get 6.
\frac{x\sqrt{2}}{6}=\frac{\sqrt{5}\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{x\sqrt{2}}{6}=\frac{\sqrt{5}\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\frac{x\sqrt{2}}{6}=\frac{\sqrt{5}\sqrt{5}\sqrt{2}}{10}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{x\sqrt{2}}{6}=\frac{5\sqrt{2}}{10}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{x\sqrt{2}}{6}=\frac{1}{2}\sqrt{2}
Divide 5\sqrt{2} by 10 to get \frac{1}{2}\sqrt{2}.
x\sqrt{2}=3\sqrt{2}
Multiply both sides of the equation by 6, the least common multiple of 6,2.
\sqrt{2}x=3\sqrt{2}
The equation is in standard form.
\frac{\sqrt{2}x}{\sqrt{2}}=\frac{3\sqrt{2}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
x=\frac{3\sqrt{2}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
x=3
Divide 3\sqrt{2} by \sqrt{2}.