Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\times 4}{20\times 3a^{2}x}
Multiply \frac{x}{20} times \frac{4}{3a^{2}x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3\times 5a^{2}}
Cancel out 4x in both numerator and denominator.
\frac{1}{15a^{2}}
Multiply 3 and 5 to get 15.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{x\times 4}{20\times 3a^{2}x})
Multiply \frac{x}{20} times \frac{4}{3a^{2}x} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{3\times 5a^{2}})
Cancel out 4x in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{15a^{2}})
Multiply 3 and 5 to get 15.
-\left(15a^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(15a^{2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(15a^{2}\right)^{-2}\times 2\times 15a^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-30a^{1}\times \left(15a^{2}\right)^{-2}
Simplify.
-30a\times \left(15a^{2}\right)^{-2}
For any term t, t^{1}=t.