Solve for x
x=\frac{\sqrt{65}}{20}-\frac{1}{4}\approx 0.153112887
x=-\frac{\sqrt{65}}{20}-\frac{1}{4}\approx -0.653112887
Graph
Share
Copied to clipboard
\left(2x-1\right)x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{1}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(2x+1\right), the least common multiple of 2x+1,1-2x.
2x^{2}-x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Use the distributive property to multiply 2x-1 by x.
2x^{2}-x-2-4x=3\left(2x-1\right)\left(2x+1\right)
Use the distributive property to multiply -1-2x by 2.
2x^{2}-5x-2=3\left(2x-1\right)\left(2x+1\right)
Combine -x and -4x to get -5x.
2x^{2}-5x-2=\left(6x-3\right)\left(2x+1\right)
Use the distributive property to multiply 3 by 2x-1.
2x^{2}-5x-2=12x^{2}-3
Use the distributive property to multiply 6x-3 by 2x+1 and combine like terms.
2x^{2}-5x-2-12x^{2}=-3
Subtract 12x^{2} from both sides.
-10x^{2}-5x-2=-3
Combine 2x^{2} and -12x^{2} to get -10x^{2}.
-10x^{2}-5x-2+3=0
Add 3 to both sides.
-10x^{2}-5x+1=0
Add -2 and 3 to get 1.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-10\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, -5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-10\right)}}{2\left(-10\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+40}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-\left(-5\right)±\sqrt{65}}{2\left(-10\right)}
Add 25 to 40.
x=\frac{5±\sqrt{65}}{2\left(-10\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{65}}{-20}
Multiply 2 times -10.
x=\frac{\sqrt{65}+5}{-20}
Now solve the equation x=\frac{5±\sqrt{65}}{-20} when ± is plus. Add 5 to \sqrt{65}.
x=-\frac{\sqrt{65}}{20}-\frac{1}{4}
Divide 5+\sqrt{65} by -20.
x=\frac{5-\sqrt{65}}{-20}
Now solve the equation x=\frac{5±\sqrt{65}}{-20} when ± is minus. Subtract \sqrt{65} from 5.
x=\frac{\sqrt{65}}{20}-\frac{1}{4}
Divide 5-\sqrt{65} by -20.
x=-\frac{\sqrt{65}}{20}-\frac{1}{4} x=\frac{\sqrt{65}}{20}-\frac{1}{4}
The equation is now solved.
\left(2x-1\right)x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{1}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(2x+1\right), the least common multiple of 2x+1,1-2x.
2x^{2}-x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
Use the distributive property to multiply 2x-1 by x.
2x^{2}-x-2-4x=3\left(2x-1\right)\left(2x+1\right)
Use the distributive property to multiply -1-2x by 2.
2x^{2}-5x-2=3\left(2x-1\right)\left(2x+1\right)
Combine -x and -4x to get -5x.
2x^{2}-5x-2=\left(6x-3\right)\left(2x+1\right)
Use the distributive property to multiply 3 by 2x-1.
2x^{2}-5x-2=12x^{2}-3
Use the distributive property to multiply 6x-3 by 2x+1 and combine like terms.
2x^{2}-5x-2-12x^{2}=-3
Subtract 12x^{2} from both sides.
-10x^{2}-5x-2=-3
Combine 2x^{2} and -12x^{2} to get -10x^{2}.
-10x^{2}-5x=-3+2
Add 2 to both sides.
-10x^{2}-5x=-1
Add -3 and 2 to get -1.
\frac{-10x^{2}-5x}{-10}=-\frac{1}{-10}
Divide both sides by -10.
x^{2}+\left(-\frac{5}{-10}\right)x=-\frac{1}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}+\frac{1}{2}x=-\frac{1}{-10}
Reduce the fraction \frac{-5}{-10} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{1}{2}x=\frac{1}{10}
Divide -1 by -10.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{10}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{10}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{13}{80}
Add \frac{1}{10} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{13}{80}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{80}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{65}}{20} x+\frac{1}{4}=-\frac{\sqrt{65}}{20}
Simplify.
x=\frac{\sqrt{65}}{20}-\frac{1}{4} x=-\frac{\sqrt{65}}{20}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}