Solve for k (complex solution)
k=\frac{2}{3}-\frac{4}{3x}
x\neq \frac{4}{5}\text{ and }x\neq 0\text{ and }x\neq -4\text{ and }x\neq -1
Solve for x (complex solution)
x=\frac{4}{2-3k}
k\neq \frac{2}{3}\text{ and }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
Solve for k
k=\frac{2}{3}-\frac{4}{3x}
x\neq -4\text{ and }x\neq 0\text{ and }x\neq \frac{4}{5}\text{ and }x\neq -1
Solve for x
x=\frac{4}{2-3k}
k\neq \frac{2}{3}\text{ and }k\neq 2\text{ and }|k|\neq 1
Share
Copied to clipboard
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Variable k cannot be equal to any of the values -1,1,2 since division by zero is not defined. Multiply both sides of the equation by 2\left(k-2\right)\left(k-1\right)\left(k+1\right), the least common multiple of 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Use the distributive property to multiply k-2 by x.
kx-2x+2k-4xk-2+4x=2k+2
Use the distributive property to multiply 2k-2 by 1-2x.
-3kx-2x+2k-2+4x=2k+2
Combine kx and -4xk to get -3kx.
-3kx+2x+2k-2=2k+2
Combine -2x and 4x to get 2x.
-3kx+2x+2k-2-2k=2
Subtract 2k from both sides.
-3kx+2x-2=2
Combine 2k and -2k to get 0.
-3kx-2=2-2x
Subtract 2x from both sides.
-3kx=2-2x+2
Add 2 to both sides.
-3kx=4-2x
Add 2 and 2 to get 4.
\left(-3x\right)k=4-2x
The equation is in standard form.
\frac{\left(-3x\right)k}{-3x}=\frac{4-2x}{-3x}
Divide both sides by -3x.
k=\frac{4-2x}{-3x}
Dividing by -3x undoes the multiplication by -3x.
k=\frac{2}{3}-\frac{4}{3x}
Divide 4-2x by -3x.
k=\frac{2}{3}-\frac{4}{3x}\text{, }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
Variable k cannot be equal to any of the values -1,1,2.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Multiply both sides of the equation by 2\left(k-2\right)\left(k-1\right)\left(k+1\right), the least common multiple of 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Use the distributive property to multiply k-2 by x.
kx-2x+2k-4kx-2+4x=2k+2
Use the distributive property to multiply 2k-2 by 1-2x.
-3kx-2x+2k-2+4x=2k+2
Combine kx and -4kx to get -3kx.
-3kx+2x+2k-2=2k+2
Combine -2x and 4x to get 2x.
-3kx+2x-2=2k+2-2k
Subtract 2k from both sides.
-3kx+2x-2=2
Combine 2k and -2k to get 0.
-3kx+2x=2+2
Add 2 to both sides.
-3kx+2x=4
Add 2 and 2 to get 4.
\left(-3k+2\right)x=4
Combine all terms containing x.
\left(2-3k\right)x=4
The equation is in standard form.
\frac{\left(2-3k\right)x}{2-3k}=\frac{4}{2-3k}
Divide both sides by 2-3k.
x=\frac{4}{2-3k}
Dividing by 2-3k undoes the multiplication by 2-3k.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Variable k cannot be equal to any of the values -1,1,2 since division by zero is not defined. Multiply both sides of the equation by 2\left(k-2\right)\left(k-1\right)\left(k+1\right), the least common multiple of 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Use the distributive property to multiply k-2 by x.
kx-2x+2k-4xk-2+4x=2k+2
Use the distributive property to multiply 2k-2 by 1-2x.
-3kx-2x+2k-2+4x=2k+2
Combine kx and -4xk to get -3kx.
-3kx+2x+2k-2=2k+2
Combine -2x and 4x to get 2x.
-3kx+2x+2k-2-2k=2
Subtract 2k from both sides.
-3kx+2x-2=2
Combine 2k and -2k to get 0.
-3kx-2=2-2x
Subtract 2x from both sides.
-3kx=2-2x+2
Add 2 to both sides.
-3kx=4-2x
Add 2 and 2 to get 4.
\left(-3x\right)k=4-2x
The equation is in standard form.
\frac{\left(-3x\right)k}{-3x}=\frac{4-2x}{-3x}
Divide both sides by -3x.
k=\frac{4-2x}{-3x}
Dividing by -3x undoes the multiplication by -3x.
k=\frac{2}{3}-\frac{4}{3x}
Divide 4-2x by -3x.
k=\frac{2}{3}-\frac{4}{3x}\text{, }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
Variable k cannot be equal to any of the values -1,1,2.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Multiply both sides of the equation by 2\left(k-2\right)\left(k-1\right)\left(k+1\right), the least common multiple of 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
Use the distributive property to multiply k-2 by x.
kx-2x+2k-4kx-2+4x=2k+2
Use the distributive property to multiply 2k-2 by 1-2x.
-3kx-2x+2k-2+4x=2k+2
Combine kx and -4kx to get -3kx.
-3kx+2x+2k-2=2k+2
Combine -2x and 4x to get 2x.
-3kx+2x-2=2k+2-2k
Subtract 2k from both sides.
-3kx+2x-2=2
Combine 2k and -2k to get 0.
-3kx+2x=2+2
Add 2 to both sides.
-3kx+2x=4
Add 2 and 2 to get 4.
\left(-3k+2\right)x=4
Combine all terms containing x.
\left(2-3k\right)x=4
The equation is in standard form.
\frac{\left(2-3k\right)x}{2-3k}=\frac{4}{2-3k}
Divide both sides by 2-3k.
x=\frac{4}{2-3k}
Dividing by 2-3k undoes the multiplication by 2-3k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}