Evaluate
-\frac{x-2}{x+2}
Expand
-\frac{x-2}{x+2}
Graph
Share
Copied to clipboard
\frac{x}{2}\times \frac{\frac{x-2}{x+2}-\frac{x+2}{x+2}}{\frac{x+2}{x-2}+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+2}{x+2}.
\frac{x}{2}\times \frac{\frac{x-2-\left(x+2\right)}{x+2}}{\frac{x+2}{x-2}+1}
Since \frac{x-2}{x+2} and \frac{x+2}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{2}\times \frac{\frac{x-2-x-2}{x+2}}{\frac{x+2}{x-2}+1}
Do the multiplications in x-2-\left(x+2\right).
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{x+2}{x-2}+1}
Combine like terms in x-2-x-2.
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{x+2}{x-2}+\frac{x-2}{x-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-2}{x-2}.
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{x+2+x-2}{x-2}}
Since \frac{x+2}{x-2} and \frac{x-2}{x-2} have the same denominator, add them by adding their numerators.
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{2x}{x-2}}
Combine like terms in x+2+x-2.
\frac{x}{2}\times \frac{-4\left(x-2\right)}{\left(x+2\right)\times 2x}
Divide \frac{-4}{x+2} by \frac{2x}{x-2} by multiplying \frac{-4}{x+2} by the reciprocal of \frac{2x}{x-2}.
\frac{x}{2}\times \frac{-2\left(x-2\right)}{x\left(x+2\right)}
Cancel out 2 in both numerator and denominator.
\frac{x\left(-2\right)\left(x-2\right)}{2x\left(x+2\right)}
Multiply \frac{x}{2} times \frac{-2\left(x-2\right)}{x\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x-2\right)}{x+2}
Cancel out 2x in both numerator and denominator.
\frac{-x-\left(-2\right)}{x+2}
To find the opposite of x-2, find the opposite of each term.
\frac{-x+2}{x+2}
The opposite of -2 is 2.
\frac{x}{2}\times \frac{\frac{x-2}{x+2}-\frac{x+2}{x+2}}{\frac{x+2}{x-2}+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+2}{x+2}.
\frac{x}{2}\times \frac{\frac{x-2-\left(x+2\right)}{x+2}}{\frac{x+2}{x-2}+1}
Since \frac{x-2}{x+2} and \frac{x+2}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{x}{2}\times \frac{\frac{x-2-x-2}{x+2}}{\frac{x+2}{x-2}+1}
Do the multiplications in x-2-\left(x+2\right).
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{x+2}{x-2}+1}
Combine like terms in x-2-x-2.
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{x+2}{x-2}+\frac{x-2}{x-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-2}{x-2}.
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{x+2+x-2}{x-2}}
Since \frac{x+2}{x-2} and \frac{x-2}{x-2} have the same denominator, add them by adding their numerators.
\frac{x}{2}\times \frac{\frac{-4}{x+2}}{\frac{2x}{x-2}}
Combine like terms in x+2+x-2.
\frac{x}{2}\times \frac{-4\left(x-2\right)}{\left(x+2\right)\times 2x}
Divide \frac{-4}{x+2} by \frac{2x}{x-2} by multiplying \frac{-4}{x+2} by the reciprocal of \frac{2x}{x-2}.
\frac{x}{2}\times \frac{-2\left(x-2\right)}{x\left(x+2\right)}
Cancel out 2 in both numerator and denominator.
\frac{x\left(-2\right)\left(x-2\right)}{2x\left(x+2\right)}
Multiply \frac{x}{2} times \frac{-2\left(x-2\right)}{x\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(x-2\right)}{x+2}
Cancel out 2x in both numerator and denominator.
\frac{-x-\left(-2\right)}{x+2}
To find the opposite of x-2, find the opposite of each term.
\frac{-x+2}{x+2}
The opposite of -2 is 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}