Solve for x
x = -\frac{21}{2} = -10\frac{1}{2} = -10.5
Graph
Share
Copied to clipboard
3x+2\times 2x=3\left(7+3x\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x+4x=3\left(7+3x\right)
Multiply 2 and 2 to get 4.
7x=3\left(7+3x\right)
Combine 3x and 4x to get 7x.
7x=21+9x
Use the distributive property to multiply 3 by 7+3x.
7x-9x=21
Subtract 9x from both sides.
-2x=21
Combine 7x and -9x to get -2x.
x=\frac{21}{-2}
Divide both sides by -2.
x=-\frac{21}{2}
Fraction \frac{21}{-2} can be rewritten as -\frac{21}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}