Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6xx+12\times 2-xx=3xx+12x\left(-\frac{5}{4}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 2,x,12,4.
6xx+12\times 2-x^{2}=3xx+12x\left(-\frac{5}{4}\right)
Multiply x and x to get x^{2}.
6x^{2}+12\times 2-x^{2}=3xx+12x\left(-\frac{5}{4}\right)
Multiply x and x to get x^{2}.
6x^{2}+24-x^{2}=3xx+12x\left(-\frac{5}{4}\right)
Multiply 12 and 2 to get 24.
6x^{2}+24-x^{2}=3x^{2}+12x\left(-\frac{5}{4}\right)
Multiply x and x to get x^{2}.
6x^{2}+24-x^{2}=3x^{2}+\frac{12\left(-5\right)}{4}x
Express 12\left(-\frac{5}{4}\right) as a single fraction.
6x^{2}+24-x^{2}=3x^{2}+\frac{-60}{4}x
Multiply 12 and -5 to get -60.
6x^{2}+24-x^{2}=3x^{2}-15x
Divide -60 by 4 to get -15.
6x^{2}+24-x^{2}-3x^{2}=-15x
Subtract 3x^{2} from both sides.
3x^{2}+24-x^{2}=-15x
Combine 6x^{2} and -3x^{2} to get 3x^{2}.
3x^{2}+24-x^{2}+15x=0
Add 15x to both sides.
2x^{2}+24+15x=0
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}+15x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 2\times 24}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 15 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 2\times 24}}{2\times 2}
Square 15.
x=\frac{-15±\sqrt{225-8\times 24}}{2\times 2}
Multiply -4 times 2.
x=\frac{-15±\sqrt{225-192}}{2\times 2}
Multiply -8 times 24.
x=\frac{-15±\sqrt{33}}{2\times 2}
Add 225 to -192.
x=\frac{-15±\sqrt{33}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{33}-15}{4}
Now solve the equation x=\frac{-15±\sqrt{33}}{4} when ± is plus. Add -15 to \sqrt{33}.
x=\frac{-\sqrt{33}-15}{4}
Now solve the equation x=\frac{-15±\sqrt{33}}{4} when ± is minus. Subtract \sqrt{33} from -15.
x=\frac{\sqrt{33}-15}{4} x=\frac{-\sqrt{33}-15}{4}
The equation is now solved.
6xx+12\times 2-xx=3xx+12x\left(-\frac{5}{4}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 2,x,12,4.
6xx+12\times 2-x^{2}=3xx+12x\left(-\frac{5}{4}\right)
Multiply x and x to get x^{2}.
6x^{2}+12\times 2-x^{2}=3xx+12x\left(-\frac{5}{4}\right)
Multiply x and x to get x^{2}.
6x^{2}+24-x^{2}=3xx+12x\left(-\frac{5}{4}\right)
Multiply 12 and 2 to get 24.
6x^{2}+24-x^{2}=3x^{2}+12x\left(-\frac{5}{4}\right)
Multiply x and x to get x^{2}.
6x^{2}+24-x^{2}=3x^{2}+\frac{12\left(-5\right)}{4}x
Express 12\left(-\frac{5}{4}\right) as a single fraction.
6x^{2}+24-x^{2}=3x^{2}+\frac{-60}{4}x
Multiply 12 and -5 to get -60.
6x^{2}+24-x^{2}=3x^{2}-15x
Divide -60 by 4 to get -15.
6x^{2}+24-x^{2}-3x^{2}=-15x
Subtract 3x^{2} from both sides.
3x^{2}+24-x^{2}=-15x
Combine 6x^{2} and -3x^{2} to get 3x^{2}.
3x^{2}+24-x^{2}+15x=0
Add 15x to both sides.
3x^{2}-x^{2}+15x=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
2x^{2}+15x=-24
Combine 3x^{2} and -x^{2} to get 2x^{2}.
\frac{2x^{2}+15x}{2}=-\frac{24}{2}
Divide both sides by 2.
x^{2}+\frac{15}{2}x=-\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{15}{2}x=-12
Divide -24 by 2.
x^{2}+\frac{15}{2}x+\left(\frac{15}{4}\right)^{2}=-12+\left(\frac{15}{4}\right)^{2}
Divide \frac{15}{2}, the coefficient of the x term, by 2 to get \frac{15}{4}. Then add the square of \frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{2}x+\frac{225}{16}=-12+\frac{225}{16}
Square \frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{2}x+\frac{225}{16}=\frac{33}{16}
Add -12 to \frac{225}{16}.
\left(x+\frac{15}{4}\right)^{2}=\frac{33}{16}
Factor x^{2}+\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
x+\frac{15}{4}=\frac{\sqrt{33}}{4} x+\frac{15}{4}=-\frac{\sqrt{33}}{4}
Simplify.
x=\frac{\sqrt{33}-15}{4} x=\frac{-\sqrt{33}-15}{4}
Subtract \frac{15}{4} from both sides of the equation.