Solve for x
x=\frac{2}{3}\approx 0.666666667
x=0
Graph
Share
Copied to clipboard
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of 2+x,2-x.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
Use the distributive property to multiply x-2 by x.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
Express \left(2+x\right)\times \frac{x}{2} as a single fraction.
x^{2}-2x=-\frac{2x+x^{2}}{2}
Use the distributive property to multiply 2+x by x.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
Divide each term of 2x+x^{2} by 2 to get x+\frac{1}{2}x^{2}.
x^{2}-2x=-x-\frac{1}{2}x^{2}
To find the opposite of x+\frac{1}{2}x^{2}, find the opposite of each term.
x^{2}-2x+x=-\frac{1}{2}x^{2}
Add x to both sides.
x^{2}-x=-\frac{1}{2}x^{2}
Combine -2x and x to get -x.
x^{2}-x+\frac{1}{2}x^{2}=0
Add \frac{1}{2}x^{2} to both sides.
\frac{3}{2}x^{2}-x=0
Combine x^{2} and \frac{1}{2}x^{2} to get \frac{3}{2}x^{2}.
x\left(\frac{3}{2}x-1\right)=0
Factor out x.
x=0 x=\frac{2}{3}
To find equation solutions, solve x=0 and \frac{3x}{2}-1=0.
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of 2+x,2-x.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
Use the distributive property to multiply x-2 by x.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
Express \left(2+x\right)\times \frac{x}{2} as a single fraction.
x^{2}-2x=-\frac{2x+x^{2}}{2}
Use the distributive property to multiply 2+x by x.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
Divide each term of 2x+x^{2} by 2 to get x+\frac{1}{2}x^{2}.
x^{2}-2x=-x-\frac{1}{2}x^{2}
To find the opposite of x+\frac{1}{2}x^{2}, find the opposite of each term.
x^{2}-2x+x=-\frac{1}{2}x^{2}
Add x to both sides.
x^{2}-x=-\frac{1}{2}x^{2}
Combine -2x and x to get -x.
x^{2}-x+\frac{1}{2}x^{2}=0
Add \frac{1}{2}x^{2} to both sides.
\frac{3}{2}x^{2}-x=0
Combine x^{2} and \frac{1}{2}x^{2} to get \frac{3}{2}x^{2}.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times \frac{3}{2}}
Take the square root of 1.
x=\frac{1±1}{2\times \frac{3}{2}}
The opposite of -1 is 1.
x=\frac{1±1}{3}
Multiply 2 times \frac{3}{2}.
x=\frac{2}{3}
Now solve the equation x=\frac{1±1}{3} when ± is plus. Add 1 to 1.
x=\frac{0}{3}
Now solve the equation x=\frac{1±1}{3} when ± is minus. Subtract 1 from 1.
x=0
Divide 0 by 3.
x=\frac{2}{3} x=0
The equation is now solved.
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of 2+x,2-x.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
Use the distributive property to multiply x-2 by x.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
Express \left(2+x\right)\times \frac{x}{2} as a single fraction.
x^{2}-2x=-\frac{2x+x^{2}}{2}
Use the distributive property to multiply 2+x by x.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
Divide each term of 2x+x^{2} by 2 to get x+\frac{1}{2}x^{2}.
x^{2}-2x=-x-\frac{1}{2}x^{2}
To find the opposite of x+\frac{1}{2}x^{2}, find the opposite of each term.
x^{2}-2x+x=-\frac{1}{2}x^{2}
Add x to both sides.
x^{2}-x=-\frac{1}{2}x^{2}
Combine -2x and x to get -x.
x^{2}-x+\frac{1}{2}x^{2}=0
Add \frac{1}{2}x^{2} to both sides.
\frac{3}{2}x^{2}-x=0
Combine x^{2} and \frac{1}{2}x^{2} to get \frac{3}{2}x^{2}.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=\frac{0}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=\frac{0}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}-\frac{2}{3}x=\frac{0}{\frac{3}{2}}
Divide -1 by \frac{3}{2} by multiplying -1 by the reciprocal of \frac{3}{2}.
x^{2}-\frac{2}{3}x=0
Divide 0 by \frac{3}{2} by multiplying 0 by the reciprocal of \frac{3}{2}.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
Simplify.
x=\frac{2}{3} x=0
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}