Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{1x+16}-\frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)}-\frac{4}{x^{2}-4x}
Factor \left(2x-8\right)\left(2x+8\right).
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1x+16 and 2^{2}\left(x-4\right)\left(x+4\right) is 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{x}{1x+16} times \frac{2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)}. Multiply \frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)} times \frac{x+16}{x+16}.
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Since \frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Do the multiplications in x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right).
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Combine like terms in 4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256.
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x\left(x-4\right)}
Factor x^{2}-4x.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right) and x\left(x-4\right) is 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} times \frac{x}{x}. Multiply \frac{4}{x\left(x-4\right)} times \frac{2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}\left(x+4\right)\left(x+16\right)}.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Since \frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Do the multiplications in \left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right).
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Combine like terms in 3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024.
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{4x^{4}+64x^{3}-64x^{2}-1024x}
Expand 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right).
\frac{x}{1x+16}-\frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)}-\frac{4}{x^{2}-4x}
Factor \left(2x-8\right)\left(2x+8\right).
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1x+16 and 2^{2}\left(x-4\right)\left(x+4\right) is 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{x}{1x+16} times \frac{2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)}. Multiply \frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)} times \frac{x+16}{x+16}.
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Since \frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Do the multiplications in x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right).
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Combine like terms in 4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256.
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x\left(x-4\right)}
Factor x^{2}-4x.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right) and x\left(x-4\right) is 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} times \frac{x}{x}. Multiply \frac{4}{x\left(x-4\right)} times \frac{2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}\left(x+4\right)\left(x+16\right)}.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Since \frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Do the multiplications in \left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right).
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Combine like terms in 3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024.
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{4x^{4}+64x^{3}-64x^{2}-1024x}
Expand 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right).