Evaluate
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{4x\left(x+16\right)\left(x^{2}-16\right)}
Expand
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{4\left(x+4\right)\left(x+16\right)\left(x^{2}-4x\right)}
Graph
Share
Copied to clipboard
\frac{x}{1x+16}-\frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)}-\frac{4}{x^{2}-4x}
Factor \left(2x-8\right)\left(2x+8\right).
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1x+16 and 2^{2}\left(x-4\right)\left(x+4\right) is 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{x}{1x+16} times \frac{2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)}. Multiply \frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)} times \frac{x+16}{x+16}.
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Since \frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Do the multiplications in x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right).
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Combine like terms in 4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256.
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x\left(x-4\right)}
Factor x^{2}-4x.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right) and x\left(x-4\right) is 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} times \frac{x}{x}. Multiply \frac{4}{x\left(x-4\right)} times \frac{2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}\left(x+4\right)\left(x+16\right)}.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Since \frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Do the multiplications in \left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right).
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Combine like terms in 3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024.
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{4x^{4}+64x^{3}-64x^{2}-1024x}
Expand 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right).
\frac{x}{1x+16}-\frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)}-\frac{4}{x^{2}-4x}
Factor \left(2x-8\right)\left(2x+8\right).
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1x+16 and 2^{2}\left(x-4\right)\left(x+4\right) is 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{x}{1x+16} times \frac{2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)}. Multiply \frac{x^{2}+16}{2^{2}\left(x-4\right)\left(x+4\right)} times \frac{x+16}{x+16}.
\frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Since \frac{x\times 2^{2}\left(x-4\right)\left(x+4\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{\left(x^{2}+16\right)\left(x+16\right)}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Do the multiplications in x\times 2^{2}\left(x-4\right)\left(x+4\right)-\left(x^{2}+16\right)\left(x+16\right).
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x^{2}-4x}
Combine like terms in 4x^{3}+16x^{2}-16x^{2}-64x-x^{3}-16x^{2}-16x-256.
\frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4}{x\left(x-4\right)}
Factor x^{2}-4x.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}-\frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right) and x\left(x-4\right) is 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right). Multiply \frac{3x^{3}-16x^{2}-80x-256}{2^{2}\left(x-4\right)\left(x+4\right)\left(x+16\right)} times \frac{x}{x}. Multiply \frac{4}{x\left(x-4\right)} times \frac{2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}\left(x+4\right)\left(x+16\right)}.
\frac{\left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Since \frac{\left(3x^{3}-16x^{2}-80x-256\right)x}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} and \frac{4\times 2^{2}\left(x+4\right)\left(x+16\right)}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Do the multiplications in \left(3x^{3}-16x^{2}-80x-256\right)x-4\times 2^{2}\left(x+4\right)\left(x+16\right).
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right)}
Combine like terms in 3x^{4}-16x^{3}-80x^{2}-256x-16x^{2}-256x-64x-1024.
\frac{3x^{4}-16x^{3}-96x^{2}-576x-1024}{4x^{4}+64x^{3}-64x^{2}-1024x}
Expand 2^{2}x\left(x-4\right)\left(x+4\right)\left(x+16\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}