Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=-x+1-x\left(-x+1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
x=-x+1+x^{2}-x
Use the distributive property to multiply -x by -x+1.
x=-2x+1+x^{2}
Combine -x and -x to get -2x.
x+2x=1+x^{2}
Add 2x to both sides.
3x=1+x^{2}
Combine x and 2x to get 3x.
3x-1=x^{2}
Subtract 1 from both sides.
3x-1-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+3x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-3±\sqrt{5}}{2\left(-1\right)}
Add 9 to -4.
x=\frac{-3±\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{5}-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{5}}{-2} when ± is plus. Add -3 to \sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Divide -3+\sqrt{5} by -2.
x=\frac{-\sqrt{5}-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{5}}{-2} when ± is minus. Subtract \sqrt{5} from -3.
x=\frac{\sqrt{5}+3}{2}
Divide -3-\sqrt{5} by -2.
x=\frac{3-\sqrt{5}}{2} x=\frac{\sqrt{5}+3}{2}
The equation is now solved.
x=-x+1-x\left(-x+1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -x+1.
x=-x+1+x^{2}-x
Use the distributive property to multiply -x by -x+1.
x=-2x+1+x^{2}
Combine -x and -x to get -2x.
x+2x=1+x^{2}
Add 2x to both sides.
3x=1+x^{2}
Combine x and 2x to get 3x.
3x-x^{2}=1
Subtract x^{2} from both sides.
-x^{2}+3x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{3}{-1}x=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-3x=\frac{1}{-1}
Divide 3 by -1.
x^{2}-3x=-1
Divide 1 by -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-1+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{5}{4}
Add -1 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{5}}{2} x-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
Add \frac{3}{2} to both sides of the equation.