Solve for p
\left\{\begin{matrix}p=-\frac{2x+y+\left(-2-6i\right)}{2+6i-y}\text{, }&x\neq 0\text{ and }y\neq 2+6i\\p\neq 1\text{, }&y=2+6i\text{ and }x=0\end{matrix}\right.
Solve for x
x=\frac{py-y+\left(-2-6i\right)p+\left(2+6i\right)}{2}
p\neq 1
Share
Copied to clipboard
x+\left(-\frac{1}{2}p+\frac{1}{2}\right)y=\left(1+3i\right)\left(-p+1\right)
Variable p cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -p+1.
x-\frac{1}{2}py+\frac{1}{2}y=\left(1+3i\right)\left(-p+1\right)
Use the distributive property to multiply -\frac{1}{2}p+\frac{1}{2} by y.
x-\frac{1}{2}py+\frac{1}{2}y=\left(-1-3i\right)p+\left(1+3i\right)
Use the distributive property to multiply 1+3i by -p+1.
x-\frac{1}{2}py+\frac{1}{2}y-\left(-1-3i\right)p=1+3i
Subtract \left(-1-3i\right)p from both sides.
x-\frac{1}{2}py+\frac{1}{2}y+\left(1+3i\right)p=1+3i
Multiply -1 and -1-3i to get 1+3i.
-\frac{1}{2}py+\frac{1}{2}y+\left(1+3i\right)p=1+3i-x
Subtract x from both sides.
-\frac{1}{2}py+\left(1+3i\right)p=1+3i-x-\frac{1}{2}y
Subtract \frac{1}{2}y from both sides.
\left(-\frac{1}{2}y+\left(1+3i\right)\right)p=1+3i-x-\frac{1}{2}y
Combine all terms containing p.
\left(-\frac{y}{2}+\left(1+3i\right)\right)p=-\frac{y}{2}-x+\left(1+3i\right)
The equation is in standard form.
\frac{\left(-\frac{y}{2}+\left(1+3i\right)\right)p}{-\frac{y}{2}+\left(1+3i\right)}=\frac{-\frac{y}{2}-x+\left(1+3i\right)}{-\frac{y}{2}+\left(1+3i\right)}
Divide both sides by -\frac{1}{2}y+\left(1+3i\right).
p=\frac{-\frac{y}{2}-x+\left(1+3i\right)}{-\frac{y}{2}+\left(1+3i\right)}
Dividing by -\frac{1}{2}y+\left(1+3i\right) undoes the multiplication by -\frac{1}{2}y+\left(1+3i\right).
p=\frac{2+6i-y-2x}{2+6i-y}
Divide 1+3i-x-\frac{y}{2} by -\frac{1}{2}y+\left(1+3i\right).
p=\frac{2+6i-y-2x}{2+6i-y}\text{, }p\neq 1
Variable p cannot be equal to 1.
x+\left(-\frac{1}{2}p+\frac{1}{2}\right)y=\left(1+3i\right)\left(-p+1\right)
Multiply both sides of the equation by -p+1.
x-\frac{1}{2}py+\frac{1}{2}y=\left(1+3i\right)\left(-p+1\right)
Use the distributive property to multiply -\frac{1}{2}p+\frac{1}{2} by y.
x-\frac{1}{2}py+\frac{1}{2}y=\left(-1-3i\right)p+\left(1+3i\right)
Use the distributive property to multiply 1+3i by -p+1.
x+\frac{1}{2}y=\left(-1-3i\right)p+\left(1+3i\right)+\frac{1}{2}py
Add \frac{1}{2}py to both sides.
x=\left(-1-3i\right)p+\left(1+3i\right)+\frac{1}{2}py-\frac{1}{2}y
Subtract \frac{1}{2}y from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}