Skip to main content
Solve for p
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

x+\left(-\frac{1}{2}p+\frac{1}{2}\right)y=\left(1+3i\right)\left(-p+1\right)
Variable p cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -p+1.
x-\frac{1}{2}py+\frac{1}{2}y=\left(1+3i\right)\left(-p+1\right)
Use the distributive property to multiply -\frac{1}{2}p+\frac{1}{2} by y.
x-\frac{1}{2}py+\frac{1}{2}y=\left(-1-3i\right)p+\left(1+3i\right)
Use the distributive property to multiply 1+3i by -p+1.
x-\frac{1}{2}py+\frac{1}{2}y-\left(-1-3i\right)p=1+3i
Subtract \left(-1-3i\right)p from both sides.
x-\frac{1}{2}py+\frac{1}{2}y+\left(1+3i\right)p=1+3i
Multiply -1 and -1-3i to get 1+3i.
-\frac{1}{2}py+\frac{1}{2}y+\left(1+3i\right)p=1+3i-x
Subtract x from both sides.
-\frac{1}{2}py+\left(1+3i\right)p=1+3i-x-\frac{1}{2}y
Subtract \frac{1}{2}y from both sides.
\left(-\frac{1}{2}y+\left(1+3i\right)\right)p=1+3i-x-\frac{1}{2}y
Combine all terms containing p.
\left(-\frac{y}{2}+\left(1+3i\right)\right)p=-\frac{y}{2}-x+\left(1+3i\right)
The equation is in standard form.
\frac{\left(-\frac{y}{2}+\left(1+3i\right)\right)p}{-\frac{y}{2}+\left(1+3i\right)}=\frac{-\frac{y}{2}-x+\left(1+3i\right)}{-\frac{y}{2}+\left(1+3i\right)}
Divide both sides by -\frac{1}{2}y+\left(1+3i\right).
p=\frac{-\frac{y}{2}-x+\left(1+3i\right)}{-\frac{y}{2}+\left(1+3i\right)}
Dividing by -\frac{1}{2}y+\left(1+3i\right) undoes the multiplication by -\frac{1}{2}y+\left(1+3i\right).
p=\frac{2+6i-y-2x}{2+6i-y}
Divide 1+3i-x-\frac{y}{2} by -\frac{1}{2}y+\left(1+3i\right).
p=\frac{2+6i-y-2x}{2+6i-y}\text{, }p\neq 1
Variable p cannot be equal to 1.
x+\left(-\frac{1}{2}p+\frac{1}{2}\right)y=\left(1+3i\right)\left(-p+1\right)
Multiply both sides of the equation by -p+1.
x-\frac{1}{2}py+\frac{1}{2}y=\left(1+3i\right)\left(-p+1\right)
Use the distributive property to multiply -\frac{1}{2}p+\frac{1}{2} by y.
x-\frac{1}{2}py+\frac{1}{2}y=\left(-1-3i\right)p+\left(1+3i\right)
Use the distributive property to multiply 1+3i by -p+1.
x+\frac{1}{2}y=\left(-1-3i\right)p+\left(1+3i\right)+\frac{1}{2}py
Add \frac{1}{2}py to both sides.
x=\left(-1-3i\right)p+\left(1+3i\right)+\frac{1}{2}py-\frac{1}{2}y
Subtract \frac{1}{2}y from both sides.