Solve for x
x=\left(-\frac{3}{5}-\frac{1}{5}i\right)y+\left(2+i\right)
Solve for y
y=\left(-\frac{3}{2}+\frac{1}{2}i\right)x+\left(\frac{7}{2}+\frac{1}{2}i\right)
Share
Copied to clipboard
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}
Multiply both numerator and denominator of \frac{5}{1-3i} by the complex conjugate of the denominator, 1+3i.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5+15i}{10}
Do the multiplications in \frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{1}{2}+\frac{3}{2}i
Divide 5+15i by 10 to get \frac{1}{2}+\frac{3}{2}i.
\frac{x}{1-i}=\frac{1}{2}+\frac{3}{2}i-\frac{y}{1-2i}
Subtract \frac{y}{1-2i} from both sides.
\left(\frac{1}{2}+\frac{1}{2}i\right)x=\left(-\frac{1}{5}-\frac{2}{5}i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)
The equation is in standard form.
\frac{\left(\frac{1}{2}+\frac{1}{2}i\right)x}{\frac{1}{2}+\frac{1}{2}i}=\frac{\left(-\frac{1}{5}-\frac{2}{5}i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{2}+\frac{1}{2}i}
Divide both sides by \frac{1}{2}+\frac{1}{2}i.
x=\frac{\left(-\frac{1}{5}-\frac{2}{5}i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{2}+\frac{1}{2}i}
Dividing by \frac{1}{2}+\frac{1}{2}i undoes the multiplication by \frac{1}{2}+\frac{1}{2}i.
x=\left(-\frac{3}{5}-\frac{1}{5}i\right)y+\left(2+i\right)
Divide \frac{1}{2}+\frac{3}{2}i+\left(-\frac{1}{5}-\frac{2}{5}i\right)y by \frac{1}{2}+\frac{1}{2}i.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}
Multiply both numerator and denominator of \frac{5}{1-3i} by the complex conjugate of the denominator, 1+3i.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5+15i}{10}
Do the multiplications in \frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{1}{2}+\frac{3}{2}i
Divide 5+15i by 10 to get \frac{1}{2}+\frac{3}{2}i.
\frac{y}{1-2i}=\frac{1}{2}+\frac{3}{2}i-\frac{x}{1-i}
Subtract \frac{x}{1-i} from both sides.
\left(\frac{1}{5}+\frac{2}{5}i\right)y=\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)
The equation is in standard form.
\frac{\left(\frac{1}{5}+\frac{2}{5}i\right)y}{\frac{1}{5}+\frac{2}{5}i}=\frac{\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{5}+\frac{2}{5}i}
Divide both sides by \frac{1}{5}+\frac{2}{5}i.
y=\frac{\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{5}+\frac{2}{5}i}
Dividing by \frac{1}{5}+\frac{2}{5}i undoes the multiplication by \frac{1}{5}+\frac{2}{5}i.
y=\left(-\frac{3}{2}+\frac{1}{2}i\right)x+\left(\frac{7}{2}+\frac{1}{2}i\right)
Divide \frac{1}{2}+\frac{3}{2}i+\left(-\frac{1}{2}-\frac{1}{2}i\right)x by \frac{1}{5}+\frac{2}{5}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}