Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}
Multiply both numerator and denominator of \frac{5}{1-3i} by the complex conjugate of the denominator, 1+3i.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5+15i}{10}
Do the multiplications in \frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{1}{2}+\frac{3}{2}i
Divide 5+15i by 10 to get \frac{1}{2}+\frac{3}{2}i.
\frac{x}{1-i}=\frac{1}{2}+\frac{3}{2}i-\frac{y}{1-2i}
Subtract \frac{y}{1-2i} from both sides.
\left(\frac{1}{2}+\frac{1}{2}i\right)x=\left(-\frac{1}{5}-\frac{2}{5}i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)
The equation is in standard form.
\frac{\left(\frac{1}{2}+\frac{1}{2}i\right)x}{\frac{1}{2}+\frac{1}{2}i}=\frac{\left(-\frac{1}{5}-\frac{2}{5}i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{2}+\frac{1}{2}i}
Divide both sides by \frac{1}{2}+\frac{1}{2}i.
x=\frac{\left(-\frac{1}{5}-\frac{2}{5}i\right)y+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{2}+\frac{1}{2}i}
Dividing by \frac{1}{2}+\frac{1}{2}i undoes the multiplication by \frac{1}{2}+\frac{1}{2}i.
x=\left(-\frac{3}{5}-\frac{1}{5}i\right)y+\left(2+i\right)
Divide \frac{1}{2}+\frac{3}{2}i+\left(-\frac{1}{5}-\frac{2}{5}i\right)y by \frac{1}{2}+\frac{1}{2}i.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}
Multiply both numerator and denominator of \frac{5}{1-3i} by the complex conjugate of the denominator, 1+3i.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{5+15i}{10}
Do the multiplications in \frac{5\left(1+3i\right)}{\left(1-3i\right)\left(1+3i\right)}.
\frac{x}{1-i}+\frac{y}{1-2i}=\frac{1}{2}+\frac{3}{2}i
Divide 5+15i by 10 to get \frac{1}{2}+\frac{3}{2}i.
\frac{y}{1-2i}=\frac{1}{2}+\frac{3}{2}i-\frac{x}{1-i}
Subtract \frac{x}{1-i} from both sides.
\left(\frac{1}{5}+\frac{2}{5}i\right)y=\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)
The equation is in standard form.
\frac{\left(\frac{1}{5}+\frac{2}{5}i\right)y}{\frac{1}{5}+\frac{2}{5}i}=\frac{\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{5}+\frac{2}{5}i}
Divide both sides by \frac{1}{5}+\frac{2}{5}i.
y=\frac{\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{1}{2}+\frac{3}{2}i\right)}{\frac{1}{5}+\frac{2}{5}i}
Dividing by \frac{1}{5}+\frac{2}{5}i undoes the multiplication by \frac{1}{5}+\frac{2}{5}i.
y=\left(-\frac{3}{2}+\frac{1}{2}i\right)x+\left(\frac{7}{2}+\frac{1}{2}i\right)
Divide \frac{1}{2}+\frac{3}{2}i+\left(-\frac{1}{2}-\frac{1}{2}i\right)x by \frac{1}{5}+\frac{2}{5}i.