Solve for x
x=\frac{\sqrt{8185}-85}{8}\approx 0.683873728
x=\frac{-\sqrt{8185}-85}{8}\approx -21.933873728
Graph
Share
Copied to clipboard
-4xx+20\times 3=5x\left(4\times 4+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 20x, the least common multiple of -5,x,4.
-4x^{2}+20\times 3=5x\left(4\times 4+1\right)
Multiply x and x to get x^{2}.
-4x^{2}+60=5x\left(4\times 4+1\right)
Multiply 20 and 3 to get 60.
-4x^{2}+60=5x\left(16+1\right)
Multiply 4 and 4 to get 16.
-4x^{2}+60=5x\times 17
Add 16 and 1 to get 17.
-4x^{2}+60=85x
Multiply 5 and 17 to get 85.
-4x^{2}+60-85x=0
Subtract 85x from both sides.
-4x^{2}-85x+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-85\right)±\sqrt{\left(-85\right)^{2}-4\left(-4\right)\times 60}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -85 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-85\right)±\sqrt{7225-4\left(-4\right)\times 60}}{2\left(-4\right)}
Square -85.
x=\frac{-\left(-85\right)±\sqrt{7225+16\times 60}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-85\right)±\sqrt{7225+960}}{2\left(-4\right)}
Multiply 16 times 60.
x=\frac{-\left(-85\right)±\sqrt{8185}}{2\left(-4\right)}
Add 7225 to 960.
x=\frac{85±\sqrt{8185}}{2\left(-4\right)}
The opposite of -85 is 85.
x=\frac{85±\sqrt{8185}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{8185}+85}{-8}
Now solve the equation x=\frac{85±\sqrt{8185}}{-8} when ± is plus. Add 85 to \sqrt{8185}.
x=\frac{-\sqrt{8185}-85}{8}
Divide 85+\sqrt{8185} by -8.
x=\frac{85-\sqrt{8185}}{-8}
Now solve the equation x=\frac{85±\sqrt{8185}}{-8} when ± is minus. Subtract \sqrt{8185} from 85.
x=\frac{\sqrt{8185}-85}{8}
Divide 85-\sqrt{8185} by -8.
x=\frac{-\sqrt{8185}-85}{8} x=\frac{\sqrt{8185}-85}{8}
The equation is now solved.
-4xx+20\times 3=5x\left(4\times 4+1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 20x, the least common multiple of -5,x,4.
-4x^{2}+20\times 3=5x\left(4\times 4+1\right)
Multiply x and x to get x^{2}.
-4x^{2}+60=5x\left(4\times 4+1\right)
Multiply 20 and 3 to get 60.
-4x^{2}+60=5x\left(16+1\right)
Multiply 4 and 4 to get 16.
-4x^{2}+60=5x\times 17
Add 16 and 1 to get 17.
-4x^{2}+60=85x
Multiply 5 and 17 to get 85.
-4x^{2}+60-85x=0
Subtract 85x from both sides.
-4x^{2}-85x=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
\frac{-4x^{2}-85x}{-4}=-\frac{60}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{85}{-4}\right)x=-\frac{60}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{85}{4}x=-\frac{60}{-4}
Divide -85 by -4.
x^{2}+\frac{85}{4}x=15
Divide -60 by -4.
x^{2}+\frac{85}{4}x+\left(\frac{85}{8}\right)^{2}=15+\left(\frac{85}{8}\right)^{2}
Divide \frac{85}{4}, the coefficient of the x term, by 2 to get \frac{85}{8}. Then add the square of \frac{85}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{85}{4}x+\frac{7225}{64}=15+\frac{7225}{64}
Square \frac{85}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{85}{4}x+\frac{7225}{64}=\frac{8185}{64}
Add 15 to \frac{7225}{64}.
\left(x+\frac{85}{8}\right)^{2}=\frac{8185}{64}
Factor x^{2}+\frac{85}{4}x+\frac{7225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{85}{8}\right)^{2}}=\sqrt{\frac{8185}{64}}
Take the square root of both sides of the equation.
x+\frac{85}{8}=\frac{\sqrt{8185}}{8} x+\frac{85}{8}=-\frac{\sqrt{8185}}{8}
Simplify.
x=\frac{\sqrt{8185}-85}{8} x=\frac{-\sqrt{8185}-85}{8}
Subtract \frac{85}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}