Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{x\left(-y+z\right)}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)}+\frac{y\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)}+\frac{z}{\left(z-x\right)\left(z-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-y\right)\left(x-z\right) and \left(y-z\right)\left(y-x\right) is \left(x-y\right)\left(x-z\right)\left(-y+z\right). Multiply \frac{x}{\left(x-y\right)\left(x-z\right)} times \frac{-y+z}{-y+z}. Multiply \frac{y}{\left(y-z\right)\left(y-x\right)} times \frac{x-z}{x-z}.
\frac{x\left(-y+z\right)+y\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)}+\frac{z}{\left(z-x\right)\left(z-y\right)}
Since \frac{x\left(-y+z\right)}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)} and \frac{y\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)} have the same denominator, add them by adding their numerators.
\frac{-xy+xz+yx-yz}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)}+\frac{z}{\left(z-x\right)\left(z-y\right)}
Do the multiplications in x\left(-y+z\right)+y\left(x-z\right).
\frac{xz-yz}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)}+\frac{z}{\left(z-x\right)\left(z-y\right)}
Combine like terms in -xy+xz+yx-yz.
\frac{z\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)}+\frac{z}{\left(z-x\right)\left(z-y\right)}
Factor the expressions that are not already factored in \frac{xz-yz}{\left(x-y\right)\left(x-z\right)\left(-y+z\right)}.
\frac{z}{\left(x-z\right)\left(-y+z\right)}+\frac{z}{\left(z-x\right)\left(z-y\right)}
Cancel out x-y in both numerator and denominator.
\frac{-z}{\left(-x+z\right)\left(-y+z\right)}+\frac{z}{\left(-x+z\right)\left(-y+z\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-z\right)\left(-y+z\right) and \left(z-x\right)\left(z-y\right) is \left(-x+z\right)\left(-y+z\right). Multiply \frac{z}{\left(x-z\right)\left(-y+z\right)} times \frac{-1}{-1}.
\frac{-z+z}{\left(-x+z\right)\left(-y+z\right)}
Since \frac{-z}{\left(-x+z\right)\left(-y+z\right)} and \frac{z}{\left(-x+z\right)\left(-y+z\right)} have the same denominator, add them by adding their numerators.
\frac{0}{\left(-x+z\right)\left(-y+z\right)}
Combine like terms in -z+z.
0
Zero divided by any non-zero term gives zero.