Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{2^{2}-2\left(-1+3\right)\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Add -1 and 3 to get 2.
\frac{x}{4-2\left(-1+3\right)\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Calculate 2 to the power of 2 and get 4.
\frac{x}{4-2\times 2\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Add -1 and 3 to get 2.
\frac{x}{4-4\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Multiply 2 and 2 to get 4.
\frac{x}{4-4\left(-3\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Subtract 2 from -1 to get -3.
\frac{x}{4-\left(-12\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Multiply 4 and -3 to get -12.
\frac{x}{4+12}+\frac{\frac{1}{3}}{-1-2}-1-2
The opposite of -12 is 12.
\frac{x}{16}+\frac{\frac{1}{3}}{-1-2}-1-2
Add 4 and 12 to get 16.
\frac{x}{16}+\frac{\frac{1}{3}}{-3}-1-2
Subtract 2 from -1 to get -3.
\frac{x}{16}+\frac{1}{3\left(-3\right)}-1-2
Express \frac{\frac{1}{3}}{-3} as a single fraction.
\frac{x}{16}+\frac{1}{-9}-1-2
Multiply 3 and -3 to get -9.
\frac{x}{16}-\frac{1}{9}-1-2
Fraction \frac{1}{-9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{x}{16}-\frac{10}{9}-2
Subtract 1 from -\frac{1}{9} to get -\frac{10}{9}.
\frac{x}{16}-\frac{28}{9}
Subtract 2 from -\frac{10}{9} to get -\frac{28}{9}.
\frac{9x}{144}-\frac{28\times 16}{144}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 9 is 144. Multiply \frac{x}{16} times \frac{9}{9}. Multiply \frac{28}{9} times \frac{16}{16}.
\frac{9x-28\times 16}{144}
Since \frac{9x}{144} and \frac{28\times 16}{144} have the same denominator, subtract them by subtracting their numerators.
\frac{9x-448}{144}
Do the multiplications in 9x-28\times 16.
\frac{x}{2^{2}-2\left(-1+3\right)\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Add -1 and 3 to get 2.
\frac{x}{4-2\left(-1+3\right)\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Calculate 2 to the power of 2 and get 4.
\frac{x}{4-2\times 2\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Add -1 and 3 to get 2.
\frac{x}{4-4\left(-1-2\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Multiply 2 and 2 to get 4.
\frac{x}{4-4\left(-3\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Subtract 2 from -1 to get -3.
\frac{x}{4-\left(-12\right)}+\frac{\frac{1}{3}}{-1-2}-1-2
Multiply 4 and -3 to get -12.
\frac{x}{4+12}+\frac{\frac{1}{3}}{-1-2}-1-2
The opposite of -12 is 12.
\frac{x}{16}+\frac{\frac{1}{3}}{-1-2}-1-2
Add 4 and 12 to get 16.
\frac{x}{16}+\frac{\frac{1}{3}}{-3}-1-2
Subtract 2 from -1 to get -3.
\frac{x}{16}+\frac{1}{3\left(-3\right)}-1-2
Express \frac{\frac{1}{3}}{-3} as a single fraction.
\frac{x}{16}+\frac{1}{-9}-1-2
Multiply 3 and -3 to get -9.
\frac{x}{16}-\frac{1}{9}-1-2
Fraction \frac{1}{-9} can be rewritten as -\frac{1}{9} by extracting the negative sign.
\frac{x}{16}-\frac{10}{9}-2
Subtract 1 from -\frac{1}{9} to get -\frac{10}{9}.
\frac{x}{16}-\frac{28}{9}
Subtract 2 from -\frac{10}{9} to get -\frac{28}{9}.
\frac{9x}{144}-\frac{28\times 16}{144}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 9 is 144. Multiply \frac{x}{16} times \frac{9}{9}. Multiply \frac{28}{9} times \frac{16}{16}.
\frac{9x-28\times 16}{144}
Since \frac{9x}{144} and \frac{28\times 16}{144} have the same denominator, subtract them by subtracting their numerators.
\frac{9x-448}{144}
Do the multiplications in 9x-28\times 16.