Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}\right)x=\sqrt{5}-1
Multiply both sides of the equation by 2.
\frac{1}{2}\times 5^{\frac{1}{2}}x+\frac{1}{2}x=\sqrt{5}-1
Use the distributive property to multiply \frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2} by x.
\frac{1}{2}\sqrt{5}x+\frac{1}{2}x=\sqrt{5}-1
Reorder the terms.
\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)x=\sqrt{5}-1
Combine all terms containing x.
\frac{\sqrt{5}+1}{2}x=\sqrt{5}-1
The equation is in standard form.
\frac{2\times \frac{\sqrt{5}+1}{2}x}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}-1\right)}{\sqrt{5}+1}
Divide both sides by \frac{1}{2}\sqrt{5}+\frac{1}{2}.
x=\frac{2\left(\sqrt{5}-1\right)}{\sqrt{5}+1}
Dividing by \frac{1}{2}\sqrt{5}+\frac{1}{2} undoes the multiplication by \frac{1}{2}\sqrt{5}+\frac{1}{2}.
x=3-\sqrt{5}
Divide \sqrt{5}-1 by \frac{1}{2}\sqrt{5}+\frac{1}{2}.