Solve for x
x=\frac{2\sqrt{5}}{7}\approx 0.638876565
Graph
Share
Copied to clipboard
\frac{x\sqrt{5}}{\left(\sqrt{5}\right)^{2}}=\frac{\frac{2\sqrt{5}}{5}-x}{\frac{2\sqrt{5}}{5}}
Rationalize the denominator of \frac{x}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{x\sqrt{5}}{5}=\frac{\frac{2\sqrt{5}}{5}-x}{\frac{2\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{x\sqrt{5}}{5}=\frac{\left(\frac{2\sqrt{5}}{5}-x\right)\times 5}{2\sqrt{5}}
Divide \frac{2\sqrt{5}}{5}-x by \frac{2\sqrt{5}}{5} by multiplying \frac{2\sqrt{5}}{5}-x by the reciprocal of \frac{2\sqrt{5}}{5}.
\frac{x\sqrt{5}}{5}=\frac{\left(\frac{2\sqrt{5}}{5}-x\right)\times 5\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\left(\frac{2\sqrt{5}}{5}-x\right)\times 5}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{x\sqrt{5}}{5}=\frac{\left(\frac{2\sqrt{5}}{5}-x\right)\times 5\sqrt{5}}{2\times 5}
The square of \sqrt{5} is 5.
\frac{x\sqrt{5}}{5}=\frac{\left(\frac{2\sqrt{5}}{5}-x\right)\times 5\sqrt{5}}{10}
Multiply 2 and 5 to get 10.
\frac{x\sqrt{5}}{5}=\left(\frac{2\sqrt{5}}{5}-x\right)\times \frac{1}{2}\sqrt{5}
Divide \left(\frac{2\sqrt{5}}{5}-x\right)\times 5\sqrt{5} by 10 to get \left(\frac{2\sqrt{5}}{5}-x\right)\times \frac{1}{2}\sqrt{5}.
\frac{x\sqrt{5}}{5}=\left(\frac{2\sqrt{5}}{5}\times \frac{1}{2}-x\times \frac{1}{2}\right)\sqrt{5}
Use the distributive property to multiply \frac{2\sqrt{5}}{5}-x by \frac{1}{2}.
\frac{x\sqrt{5}}{5}=\left(\frac{2\sqrt{5}}{5\times 2}-x\times \frac{1}{2}\right)\sqrt{5}
Multiply \frac{2\sqrt{5}}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{x\sqrt{5}}{5}=\left(\frac{\sqrt{5}}{5}-x\times \frac{1}{2}\right)\sqrt{5}
Cancel out 2 in both numerator and denominator.
\frac{x\sqrt{5}}{5}=\left(\frac{\sqrt{5}}{5}-\frac{1}{2}x\right)\sqrt{5}
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
\frac{x\sqrt{5}}{5}=\frac{\sqrt{5}}{5}\sqrt{5}-\frac{1}{2}x\sqrt{5}
Use the distributive property to multiply \frac{\sqrt{5}}{5}-\frac{1}{2}x by \sqrt{5}.
\frac{x\sqrt{5}}{5}=\frac{\sqrt{5}\sqrt{5}}{5}-\frac{1}{2}x\sqrt{5}
Express \frac{\sqrt{5}}{5}\sqrt{5} as a single fraction.
\frac{x\sqrt{5}}{5}=\frac{5}{5}-\frac{1}{2}x\sqrt{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{x\sqrt{5}}{5}=1-\frac{1}{2}x\sqrt{5}
Divide 5 by 5 to get 1.
\frac{x\sqrt{5}}{5}+\frac{1}{2}x\sqrt{5}=1
Add \frac{1}{2}x\sqrt{5} to both sides.
\frac{7}{10}x\sqrt{5}=1
Combine \frac{x\sqrt{5}}{5} and \frac{1}{2}x\sqrt{5} to get \frac{7}{10}x\sqrt{5}.
\frac{7\sqrt{5}}{10}x=1
The equation is in standard form.
\frac{10\times \frac{7\sqrt{5}}{10}x}{7\sqrt{5}}=\frac{10}{7\sqrt{5}}
Divide both sides by \frac{7}{10}\sqrt{5}.
x=\frac{10}{7\sqrt{5}}
Dividing by \frac{7}{10}\sqrt{5} undoes the multiplication by \frac{7}{10}\sqrt{5}.
x=\frac{2\sqrt{5}}{7}
Divide 1 by \frac{7}{10}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}