Solve for x
x = -\frac{3 \sqrt{2}}{2} \approx -2.121320344
Graph
Share
Copied to clipboard
\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=x\sqrt{3}+\sqrt{6}
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{x\sqrt{3}}{3}=x\sqrt{3}+\sqrt{6}
The square of \sqrt{3} is 3.
\frac{x\sqrt{3}}{3}-x\sqrt{3}=\sqrt{6}
Subtract x\sqrt{3} from both sides.
-\frac{2}{3}x\sqrt{3}=\sqrt{6}
Combine \frac{x\sqrt{3}}{3} and -x\sqrt{3} to get -\frac{2}{3}x\sqrt{3}.
\left(-\frac{2\sqrt{3}}{3}\right)x=\sqrt{6}
The equation is in standard form.
\frac{\left(-\frac{2\sqrt{3}}{3}\right)x}{-\frac{2\sqrt{3}}{3}}=\frac{\sqrt{6}}{-\frac{2\sqrt{3}}{3}}
Divide both sides by -\frac{2}{3}\sqrt{3}.
x=\frac{\sqrt{6}}{-\frac{2\sqrt{3}}{3}}
Dividing by -\frac{2}{3}\sqrt{3} undoes the multiplication by -\frac{2}{3}\sqrt{3}.
x=-\frac{3\sqrt{2}}{2}
Divide \sqrt{6} by -\frac{2}{3}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}