Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=x\sqrt{3}+\sqrt{6}
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{x\sqrt{3}}{3}=x\sqrt{3}+\sqrt{6}
The square of \sqrt{3} is 3.
\frac{x\sqrt{3}}{3}-x\sqrt{3}=\sqrt{6}
Subtract x\sqrt{3} from both sides.
-\frac{2}{3}x\sqrt{3}=\sqrt{6}
Combine \frac{x\sqrt{3}}{3} and -x\sqrt{3} to get -\frac{2}{3}x\sqrt{3}.
\left(-\frac{2\sqrt{3}}{3}\right)x=\sqrt{6}
The equation is in standard form.
\frac{\left(-\frac{2\sqrt{3}}{3}\right)x}{-\frac{2\sqrt{3}}{3}}=\frac{\sqrt{6}}{-\frac{2\sqrt{3}}{3}}
Divide both sides by -\frac{2}{3}\sqrt{3}.
x=\frac{\sqrt{6}}{-\frac{2\sqrt{3}}{3}}
Dividing by -\frac{2}{3}\sqrt{3} undoes the multiplication by -\frac{2}{3}\sqrt{3}.
x=-\frac{3\sqrt{2}}{2}
Divide \sqrt{6} by -\frac{2}{3}\sqrt{3}.