Solve for x
x=\frac{4\alpha }{\alpha +4}
\alpha \neq -4\text{ and }\alpha \neq 0
Solve for α
\alpha =-\frac{4x}{x-4}
x\neq 0\text{ and }x\neq 4
Graph
Share
Copied to clipboard
4x+\alpha x=4\alpha
Multiply both sides of the equation by 4\alpha , the least common multiple of \alpha ,4.
\left(4+\alpha \right)x=4\alpha
Combine all terms containing x.
\left(\alpha +4\right)x=4\alpha
The equation is in standard form.
\frac{\left(\alpha +4\right)x}{\alpha +4}=\frac{4\alpha }{\alpha +4}
Divide both sides by \alpha +4.
x=\frac{4\alpha }{\alpha +4}
Dividing by \alpha +4 undoes the multiplication by \alpha +4.
4x+\alpha x=4\alpha
Variable \alpha cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4\alpha , the least common multiple of \alpha ,4.
4x+\alpha x-4\alpha =0
Subtract 4\alpha from both sides.
\alpha x-4\alpha =-4x
Subtract 4x from both sides. Anything subtracted from zero gives its negation.
\left(x-4\right)\alpha =-4x
Combine all terms containing \alpha .
\frac{\left(x-4\right)\alpha }{x-4}=-\frac{4x}{x-4}
Divide both sides by x-4.
\alpha =-\frac{4x}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
\alpha =-\frac{4x}{x-4}\text{, }\alpha \neq 0
Variable \alpha cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}