Evaluate
-\frac{2\left(3x^{2}+2\right)}{2-3x^{2}}
Factor
-\frac{2\left(3x^{2}+2\right)}{2-3x^{2}}
Graph
Share
Copied to clipboard
\frac{\left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right)}{\left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right)}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Rationalize the denominator of \frac{x\sqrt{3}+\sqrt{2}}{x\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by x\sqrt{3}+\sqrt{2}.
\frac{\left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right)}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Consider \left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x\sqrt{3}+\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Multiply x\sqrt{3}+\sqrt{2} and x\sqrt{3}+\sqrt{2} to get \left(x\sqrt{3}+\sqrt{2}\right)^{2}.
\frac{x^{2}\left(\sqrt{3}\right)^{2}+2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x\sqrt{3}+\sqrt{2}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Expand \left(x\sqrt{3}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{\left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right)}{\left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by x\sqrt{3}-\sqrt{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{\left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right)}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{\left(x\sqrt{3}-\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Multiply x\sqrt{3}-\sqrt{2} and x\sqrt{3}-\sqrt{2} to get \left(x\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\left(\sqrt{3}\right)^{2}-2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Expand \left(x\sqrt{3}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-2}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2+x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-2}
Since \frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2} and \frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-2} have the same denominator, add them by adding their numerators.
\frac{6x^{2}+4}{x^{2}\times 3-2}
Combine like terms in x^{2}\times 3+2x\sqrt{6}+2+x^{2}\times 3-2x\sqrt{6}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}