Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right)}{\left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right)}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Rationalize the denominator of \frac{x\sqrt{3}+\sqrt{2}}{x\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by x\sqrt{3}+\sqrt{2}.
\frac{\left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right)}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Consider \left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x\sqrt{3}+\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Multiply x\sqrt{3}+\sqrt{2} and x\sqrt{3}+\sqrt{2} to get \left(x\sqrt{3}+\sqrt{2}\right)^{2}.
\frac{x^{2}\left(\sqrt{3}\right)^{2}+2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x\sqrt{3}+\sqrt{2}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
Expand \left(x\sqrt{3}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-\left(\sqrt{2}\right)^{2}}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{\left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right)}{\left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{x\sqrt{3}-\sqrt{2}}{x\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by x\sqrt{3}-\sqrt{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{\left(x\sqrt{3}-\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right)}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(x\sqrt{3}+\sqrt{2}\right)\left(x\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{\left(x\sqrt{3}-\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Multiply x\sqrt{3}-\sqrt{2} and x\sqrt{3}-\sqrt{2} to get \left(x\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\left(\sqrt{3}\right)^{2}-2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x\sqrt{3}-\sqrt{2}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{\left(x\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Expand \left(x\sqrt{3}\right)^{2}.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-\left(\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2}+\frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-2}
The square of \sqrt{2} is 2.
\frac{x^{2}\times 3+2x\sqrt{6}+2+x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-2}
Since \frac{x^{2}\times 3+2x\sqrt{6}+2}{x^{2}\times 3-2} and \frac{x^{2}\times 3-2x\sqrt{6}+2}{x^{2}\times 3-2} have the same denominator, add them by adding their numerators.
\frac{6x^{2}+4}{x^{2}\times 3-2}
Combine like terms in x^{2}\times 3+2x\sqrt{6}+2+x^{2}\times 3-2x\sqrt{6}+2.