Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-\left(x-4\right)
Use the distributive property to multiply \left(x+1\right)^{3} by x^{2}+x+1.
\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-x+4
To find the opposite of x-4, find the opposite of each term.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}-x+4
Factor \left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}+\frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+4 times \frac{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}.
\frac{x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Since \frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} and \frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Do the multiplications in x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Combine like terms in x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{x^{5}+4x^{4}+7x^{3}+7x^{2}+4x+1}
Expand \left(x^{2}+x+1\right)\left(x+1\right)^{3}.
\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-\left(x-4\right)
Use the distributive property to multiply \left(x+1\right)^{3} by x^{2}+x+1.
\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-x+4
To find the opposite of x-4, find the opposite of each term.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}-x+4
Factor \left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}+\frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+4 times \frac{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}.
\frac{x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Since \frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} and \frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Do the multiplications in x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Combine like terms in x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{x^{5}+4x^{4}+7x^{3}+7x^{2}+4x+1}
Expand \left(x^{2}+x+1\right)\left(x+1\right)^{3}.