Evaluate
\frac{9x^{4}+21x^{3}+24x^{2}+15x+5}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Expand
\frac{9x^{4}+21x^{3}+24x^{2}+15x+5}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Graph
Share
Copied to clipboard
\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-\left(x-4\right)
Use the distributive property to multiply \left(x+1\right)^{3} by x^{2}+x+1.
\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-x+4
To find the opposite of x-4, find the opposite of each term.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}-x+4
Factor \left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}+\frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+4 times \frac{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}.
\frac{x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Since \frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} and \frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Do the multiplications in x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Combine like terms in x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{x^{5}+4x^{4}+7x^{3}+7x^{2}+4x+1}
Expand \left(x^{2}+x+1\right)\left(x+1\right)^{3}.
\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-\left(x-4\right)
Use the distributive property to multiply \left(x+1\right)^{3} by x^{2}+x+1.
\frac{x^{6}+1}{\left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}}-x+4
To find the opposite of x-4, find the opposite of each term.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}-x+4
Factor \left(x+1\right)^{3}x^{2}+\left(x+1\right)^{3}x+\left(x+1\right)^{3}.
\frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}+\frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x+4 times \frac{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}.
\frac{x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Since \frac{x^{6}+1}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} and \frac{\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}} have the same denominator, add them by adding their numerators.
\frac{x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Do the multiplications in x^{6}+1+\left(-x+4\right)\left(x^{2}+x+1\right)\left(x+1\right)^{3}.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{\left(x^{2}+x+1\right)\left(x+1\right)^{3}}
Combine like terms in x^{6}+1-x-x^{6}-4x^{5}-7x^{4}-7x^{3}-4x^{2}+4x^{5}+16x^{4}+28x^{3}+28x^{2}+16x+4.
\frac{15x+5+9x^{4}+21x^{3}+24x^{2}}{x^{5}+4x^{4}+7x^{3}+7x^{2}+4x+1}
Expand \left(x^{2}+x+1\right)\left(x+1\right)^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}