Evaluate
\frac{\left(\left(x-3\right)\left(x+10\right)\right)^{2}}{\left(7x-30\right)\left(x^{2}-10\right)}
Expand
\frac{x^{4}+14x^{3}-11x^{2}-420x+900}{\left(7x-30\right)\left(x^{2}-10\right)}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)}}{\frac{x^{2}-10}{x-3}}
Multiply \frac{x^{4}-27x}{7x-30} times \frac{x^{2}+20x+100}{x^{3}+3x^{2}+9x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)\left(x-3\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)\left(x^{2}-10\right)}
Divide \frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)} by \frac{x^{2}-10}{x-3} by multiplying \frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)} by the reciprocal of \frac{x^{2}-10}{x-3}.
\frac{x\left(x-3\right)^{2}\left(x+10\right)^{2}\left(x^{2}+3x+9\right)}{x\left(7x-30\right)\left(x^{2}-10\right)\left(x^{2}+3x+9\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)^{2}\left(x+10\right)^{2}}{\left(7x-30\right)\left(x^{2}-10\right)}
Cancel out x\left(x^{2}+3x+9\right) in both numerator and denominator.
\frac{x^{4}+14x^{3}-11x^{2}-420x+900}{7x^{3}-30x^{2}-70x+300}
Expand the expression.
\frac{\frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)}}{\frac{x^{2}-10}{x-3}}
Multiply \frac{x^{4}-27x}{7x-30} times \frac{x^{2}+20x+100}{x^{3}+3x^{2}+9x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)\left(x-3\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)\left(x^{2}-10\right)}
Divide \frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)} by \frac{x^{2}-10}{x-3} by multiplying \frac{\left(x^{4}-27x\right)\left(x^{2}+20x+100\right)}{\left(7x-30\right)\left(x^{3}+3x^{2}+9x\right)} by the reciprocal of \frac{x^{2}-10}{x-3}.
\frac{x\left(x-3\right)^{2}\left(x+10\right)^{2}\left(x^{2}+3x+9\right)}{x\left(7x-30\right)\left(x^{2}-10\right)\left(x^{2}+3x+9\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)^{2}\left(x+10\right)^{2}}{\left(7x-30\right)\left(x^{2}-10\right)}
Cancel out x\left(x^{2}+3x+9\right) in both numerator and denominator.
\frac{x^{4}+14x^{3}-11x^{2}-420x+900}{7x^{3}-30x^{2}-70x+300}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}