Factor
\frac{x\left(2x^{3}+10x+5\right)}{20}
Evaluate
\frac{x^{4}}{10}+\frac{x^{2}}{2}+\frac{x}{4}
Graph
Share
Copied to clipboard
\frac{2x^{4}+10x^{2}+5x}{20}
Factor out \frac{1}{20}.
x\left(2x^{3}+10x+5\right)
Consider 2x^{4}+10x^{2}+5x. Factor out x.
\frac{x\left(2x^{3}+10x+5\right)}{20}
Rewrite the complete factored expression. Polynomial 2x^{3}+10x+5 is not factored since it does not have any rational roots.
\frac{x^{4}}{10}+\frac{5x^{2}}{10}+\frac{x}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 2 is 10. Multiply \frac{x^{2}}{2} times \frac{5}{5}.
\frac{x^{4}+5x^{2}}{10}+\frac{x}{4}
Since \frac{x^{4}}{10} and \frac{5x^{2}}{10} have the same denominator, add them by adding their numerators.
\frac{2\left(x^{4}+5x^{2}\right)}{20}+\frac{5x}{20}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 4 is 20. Multiply \frac{x^{4}+5x^{2}}{10} times \frac{2}{2}. Multiply \frac{x}{4} times \frac{5}{5}.
\frac{2\left(x^{4}+5x^{2}\right)+5x}{20}
Since \frac{2\left(x^{4}+5x^{2}\right)}{20} and \frac{5x}{20} have the same denominator, add them by adding their numerators.
\frac{2x^{4}+10x^{2}+5x}{20}
Do the multiplications in 2\left(x^{4}+5x^{2}\right)+5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}