Solve for x
x=-\frac{1}{2}=-0.5
x=\frac{1}{2}=0.5
x=2
x=-2
Graph
Share
Copied to clipboard
4\left(x^{4}+1\right)=17x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x^{2}, the least common multiple of 2x^{2},8.
4x^{4}+4=17x^{2}
Use the distributive property to multiply 4 by x^{4}+1.
4x^{4}+4-17x^{2}=0
Subtract 17x^{2} from both sides.
4t^{2}-17t+4=0
Substitute t for x^{2}.
t=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 4\times 4}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -17 for b, and 4 for c in the quadratic formula.
t=\frac{17±15}{8}
Do the calculations.
t=4 t=\frac{1}{4}
Solve the equation t=\frac{17±15}{8} when ± is plus and when ± is minus.
x=2 x=-2 x=\frac{1}{2} x=-\frac{1}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}