Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x}{x+4}}
Factor x^{2}-16.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x}{\left(x-4\right)\left(x+4\right)} and \frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x^{2}+4x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x-x\left(x-4\right).
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x-x^{2}+4x.
\frac{\left(x^{3}-7x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x+4\right)\left(7x-x^{2}\right)}
Divide \frac{x^{3}-7x^{2}}{x+4} by \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{x^{3}-7x^{2}}{x+4} by the reciprocal of \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x-4\right)\left(x^{3}-7x^{2}\right)}{-x^{2}+7x}
Cancel out x+4 in both numerator and denominator.
\frac{\left(x-7\right)\left(x-4\right)x^{2}}{x\left(-x+7\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)\left(-x+7\right)x^{2}}{x\left(-x+7\right)}
Extract the negative sign in -7+x.
-x\left(x-4\right)
Cancel out x\left(-x+7\right) in both numerator and denominator.
-x^{2}+4x
Expand the expression.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x}{x+4}}
Factor x^{2}-16.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x}{\left(x-4\right)\left(x+4\right)} and \frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x^{2}+4x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x-x\left(x-4\right).
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x-x^{2}+4x.
\frac{\left(x^{3}-7x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x+4\right)\left(7x-x^{2}\right)}
Divide \frac{x^{3}-7x^{2}}{x+4} by \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{x^{3}-7x^{2}}{x+4} by the reciprocal of \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x-4\right)\left(x^{3}-7x^{2}\right)}{-x^{2}+7x}
Cancel out x+4 in both numerator and denominator.
\frac{\left(x-7\right)\left(x-4\right)x^{2}}{x\left(-x+7\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)\left(-x+7\right)x^{2}}{x\left(-x+7\right)}
Extract the negative sign in -7+x.
-x\left(x-4\right)
Cancel out x\left(-x+7\right) in both numerator and denominator.
-x^{2}+4x
Expand the expression.