Evaluate
-x\left(x-4\right)
Expand
4x-x^{2}
Graph
Share
Copied to clipboard
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x}{x+4}}
Factor x^{2}-16.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x}{\left(x-4\right)\left(x+4\right)} and \frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x^{2}+4x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x-x\left(x-4\right).
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x-x^{2}+4x.
\frac{\left(x^{3}-7x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x+4\right)\left(7x-x^{2}\right)}
Divide \frac{x^{3}-7x^{2}}{x+4} by \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{x^{3}-7x^{2}}{x+4} by the reciprocal of \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x-4\right)\left(x^{3}-7x^{2}\right)}{-x^{2}+7x}
Cancel out x+4 in both numerator and denominator.
\frac{\left(x-7\right)\left(x-4\right)x^{2}}{x\left(-x+7\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)\left(-x+7\right)x^{2}}{x\left(-x+7\right)}
Extract the negative sign in -7+x.
-x\left(x-4\right)
Cancel out x\left(-x+7\right) in both numerator and denominator.
-x^{2}+4x
Expand the expression.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x}{x+4}}
Factor x^{2}-16.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x}{\left(x-4\right)\left(x+4\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x}{\left(x-4\right)\left(x+4\right)} and \frac{x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{3x-x^{2}+4x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x-x\left(x-4\right).
\frac{\frac{x^{3}-7x^{2}}{x+4}}{\frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x-x^{2}+4x.
\frac{\left(x^{3}-7x^{2}\right)\left(x-4\right)\left(x+4\right)}{\left(x+4\right)\left(7x-x^{2}\right)}
Divide \frac{x^{3}-7x^{2}}{x+4} by \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{x^{3}-7x^{2}}{x+4} by the reciprocal of \frac{7x-x^{2}}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x-4\right)\left(x^{3}-7x^{2}\right)}{-x^{2}+7x}
Cancel out x+4 in both numerator and denominator.
\frac{\left(x-7\right)\left(x-4\right)x^{2}}{x\left(-x+7\right)}
Factor the expressions that are not already factored.
\frac{-\left(x-4\right)\left(-x+7\right)x^{2}}{x\left(-x+7\right)}
Extract the negative sign in -7+x.
-x\left(x-4\right)
Cancel out x\left(-x+7\right) in both numerator and denominator.
-x^{2}+4x
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}