Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{3}-3x\right)\left(x-\sqrt{3}\right)}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}
Rationalize the denominator of \frac{x^{3}-3x}{x+\sqrt{3}} by multiplying numerator and denominator by x-\sqrt{3}.
\frac{\left(x^{3}-3x\right)\left(x-\sqrt{3}\right)}{x^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(x^{3}-3x\right)\left(x-\sqrt{3}\right)}{x^{2}-3}
The square of \sqrt{3} is 3.
\frac{x\left(x-\sqrt{3}\right)\left(x^{2}-3\right)}{x^{2}-3}
Factor the expressions that are not already factored.
x\left(x-\sqrt{3}\right)
Cancel out x^{2}-3 in both numerator and denominator.
x^{2}-\sqrt{3}x
Expand the expression.
factor(\frac{\left(x^{3}-3x\right)\left(x-\sqrt{3}\right)}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)})
Rationalize the denominator of \frac{x^{3}-3x}{x+\sqrt{3}} by multiplying numerator and denominator by x-\sqrt{3}.
factor(\frac{\left(x^{3}-3x\right)\left(x-\sqrt{3}\right)}{x^{2}-\left(\sqrt{3}\right)^{2}})
Consider \left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(\frac{\left(x^{3}-3x\right)\left(x-\sqrt{3}\right)}{x^{2}-3})
The square of \sqrt{3} is 3.
factor(\frac{x\left(x-\sqrt{3}\right)\left(x^{2}-3\right)}{x^{2}-3})
Factor the expressions that are not already factored in \frac{\left(x^{3}-3x\right)\left(x-\sqrt{3}\right)}{x^{2}-3}.
factor(x\left(x-\sqrt{3}\right))
Cancel out x^{2}-3 in both numerator and denominator.
factor(x^{2}-\sqrt{3}x)
Expand the expression.
x\left(x-\sqrt{3}\right)
Factor out x.