Solve for x
x=-7
Graph
Share
Copied to clipboard
x^{3}-2x^{2}=\left(x-2\right)\left(-13x-42\right)
Variable x cannot be equal to any of the values -6,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+6\right), the least common multiple of x^{2}+4x-12,x+6.
x^{3}-2x^{2}=-13x^{2}-16x+84
Use the distributive property to multiply x-2 by -13x-42 and combine like terms.
x^{3}-2x^{2}+13x^{2}=-16x+84
Add 13x^{2} to both sides.
x^{3}+11x^{2}=-16x+84
Combine -2x^{2} and 13x^{2} to get 11x^{2}.
x^{3}+11x^{2}+16x=84
Add 16x to both sides.
x^{3}+11x^{2}+16x-84=0
Subtract 84 from both sides.
±84,±42,±28,±21,±14,±12,±7,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -84 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+13x+42=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+11x^{2}+16x-84 by x-2 to get x^{2}+13x+42. Solve the equation where the result equals to 0.
x=\frac{-13±\sqrt{13^{2}-4\times 1\times 42}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 13 for b, and 42 for c in the quadratic formula.
x=\frac{-13±1}{2}
Do the calculations.
x=-7 x=-6
Solve the equation x^{2}+13x+42=0 when ± is plus and when ± is minus.
x=-7
Remove the values that the variable cannot be equal to.
x=2 x=-7 x=-6
List all found solutions.
x=-7
Variable x cannot be equal to any of the values 2,-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}