Evaluate
-\frac{\left(x-3\right)\left(x+1\right)}{x+3}
Expand
-\frac{x^{2}-2x-3}{x+3}
Graph
Share
Copied to clipboard
\frac{\frac{x^{3}-1}{-x^{2}-3x}\times \frac{x+1}{x^{2}+x-2}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Multiply \frac{x^{3}-1}{-x^{2}-3x} times \frac{x+1}{x^{2}+x-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{3}-1\right)\left(x+1\right)\left(x^{3}-x^{2}-6x\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)\left(x^{2}+x+1\right)}
Divide \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by \frac{x^{2}+x+1}{x^{3}-x^{2}-6x} by multiplying \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by the reciprocal of \frac{x^{2}+x+1}{x^{3}-x^{2}-6x}.
\frac{x\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^{2}+x+1\right)}{x\left(x-1\right)\left(-x-3\right)\left(x+2\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+1\right)}{-x-3}
Cancel out x\left(x-1\right)\left(x+2\right)\left(x^{2}+x+1\right) in both numerator and denominator.
\frac{x^{2}-2x-3}{-x-3}
Expand the expression.
\frac{\frac{x^{3}-1}{-x^{2}-3x}\times \frac{x+1}{x^{2}+x-2}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Multiply \frac{x^{3}-1}{-x^{2}-3x} times \frac{x+1}{x^{2}+x-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{3}-1\right)\left(x+1\right)\left(x^{3}-x^{2}-6x\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)\left(x^{2}+x+1\right)}
Divide \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by \frac{x^{2}+x+1}{x^{3}-x^{2}-6x} by multiplying \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by the reciprocal of \frac{x^{2}+x+1}{x^{3}-x^{2}-6x}.
\frac{x\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^{2}+x+1\right)}{x\left(x-1\right)\left(-x-3\right)\left(x+2\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+1\right)}{-x-3}
Cancel out x\left(x-1\right)\left(x+2\right)\left(x^{2}+x+1\right) in both numerator and denominator.
\frac{x^{2}-2x-3}{-x-3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}