Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{x^{3}-1}{-x^{2}-3x}\times \frac{x+1}{x^{2}+x-2}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Multiply \frac{x^{3}-1}{-x^{2}-3x} times \frac{x+1}{x^{2}+x-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{3}-1\right)\left(x+1\right)\left(x^{3}-x^{2}-6x\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)\left(x^{2}+x+1\right)}
Divide \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by \frac{x^{2}+x+1}{x^{3}-x^{2}-6x} by multiplying \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by the reciprocal of \frac{x^{2}+x+1}{x^{3}-x^{2}-6x}.
\frac{x\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^{2}+x+1\right)}{x\left(x-1\right)\left(-x-3\right)\left(x+2\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+1\right)}{-x-3}
Cancel out x\left(x-1\right)\left(x+2\right)\left(x^{2}+x+1\right) in both numerator and denominator.
\frac{x^{2}-2x-3}{-x-3}
Expand the expression.
\frac{\frac{x^{3}-1}{-x^{2}-3x}\times \frac{x+1}{x^{2}+x-2}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)}}{\frac{x^{2}+x+1}{x^{3}-x^{2}-6x}}
Multiply \frac{x^{3}-1}{-x^{2}-3x} times \frac{x+1}{x^{2}+x-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{3}-1\right)\left(x+1\right)\left(x^{3}-x^{2}-6x\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)\left(x^{2}+x+1\right)}
Divide \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by \frac{x^{2}+x+1}{x^{3}-x^{2}-6x} by multiplying \frac{\left(x^{3}-1\right)\left(x+1\right)}{\left(-x^{2}-3x\right)\left(x^{2}+x-2\right)} by the reciprocal of \frac{x^{2}+x+1}{x^{3}-x^{2}-6x}.
\frac{x\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^{2}+x+1\right)}{x\left(x-1\right)\left(-x-3\right)\left(x+2\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+1\right)}{-x-3}
Cancel out x\left(x-1\right)\left(x+2\right)\left(x^{2}+x+1\right) in both numerator and denominator.
\frac{x^{2}-2x-3}{-x-3}
Expand the expression.