Evaluate
x^{2}+x-\frac{2}{3}
Expand
x^{2}+x-\frac{2}{3}
Graph
Share
Copied to clipboard
\frac{x^{3}}{3}+\frac{3x^{2}}{3}-\frac{\left(x-1\right)^{3}}{3}-\left(x-1\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{3}{3}.
\frac{x^{3}+3x^{2}}{3}-\frac{\left(x-1\right)^{3}}{3}-\left(x-1\right)^{2}
Since \frac{x^{3}}{3} and \frac{3x^{2}}{3} have the same denominator, add them by adding their numerators.
\frac{x^{3}+3x^{2}-\left(x-1\right)^{3}}{3}-\left(x-1\right)^{2}
Since \frac{x^{3}+3x^{2}}{3} and \frac{\left(x-1\right)^{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+3x^{2}-x^{3}+3x^{2}-3x+1}{3}-\left(x-1\right)^{2}
Do the multiplications in x^{3}+3x^{2}-\left(x-1\right)^{3}.
\frac{6x^{2}-3x+1}{3}-\left(x-1\right)^{2}
Combine like terms in x^{3}+3x^{2}-x^{3}+3x^{2}-3x+1.
\frac{6x^{2}-3x+1}{3}-\frac{3\left(x-1\right)^{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply \left(x-1\right)^{2} times \frac{3}{3}.
\frac{6x^{2}-3x+1-3\left(x-1\right)^{2}}{3}
Since \frac{6x^{2}-3x+1}{3} and \frac{3\left(x-1\right)^{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}-3x+1-3x^{2}+6x-3}{3}
Do the multiplications in 6x^{2}-3x+1-3\left(x-1\right)^{2}.
\frac{3x^{2}+3x-2}{3}
Combine like terms in 6x^{2}-3x+1-3x^{2}+6x-3.
-\frac{2}{3}+x+x^{2}
Divide each term of 3x^{2}+3x-2 by 3 to get -\frac{2}{3}+x+x^{2}.
\frac{x^{3}}{3}+\frac{3x^{2}}{3}-\frac{\left(x-1\right)^{3}}{3}-\left(x-1\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{3}{3}.
\frac{x^{3}+3x^{2}}{3}-\frac{\left(x-1\right)^{3}}{3}-\left(x-1\right)^{2}
Since \frac{x^{3}}{3} and \frac{3x^{2}}{3} have the same denominator, add them by adding their numerators.
\frac{x^{3}+3x^{2}-\left(x-1\right)^{3}}{3}-\left(x-1\right)^{2}
Since \frac{x^{3}+3x^{2}}{3} and \frac{\left(x-1\right)^{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+3x^{2}-x^{3}+3x^{2}-3x+1}{3}-\left(x-1\right)^{2}
Do the multiplications in x^{3}+3x^{2}-\left(x-1\right)^{3}.
\frac{6x^{2}-3x+1}{3}-\left(x-1\right)^{2}
Combine like terms in x^{3}+3x^{2}-x^{3}+3x^{2}-3x+1.
\frac{6x^{2}-3x+1}{3}-\frac{3\left(x-1\right)^{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply \left(x-1\right)^{2} times \frac{3}{3}.
\frac{6x^{2}-3x+1-3\left(x-1\right)^{2}}{3}
Since \frac{6x^{2}-3x+1}{3} and \frac{3\left(x-1\right)^{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{6x^{2}-3x+1-3x^{2}+6x-3}{3}
Do the multiplications in 6x^{2}-3x+1-3\left(x-1\right)^{2}.
\frac{3x^{2}+3x-2}{3}
Combine like terms in 6x^{2}-3x+1-3x^{2}+6x-3.
-\frac{2}{3}+x+x^{2}
Divide each term of 3x^{2}+3x-2 by 3 to get -\frac{2}{3}+x+x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}