Skip to main content
Solve for A
Tick mark Image
Solve for B
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}=\left(x^{2}+4\right)\left(Ax+B\right)
Multiply both sides of the equation by \left(x^{2}+4\right)^{2}, the least common multiple of \left(x^{2}+4\right)^{2},x^{2}+4.
x^{3}=Ax^{3}+x^{2}B+4Ax+4B
Use the distributive property to multiply x^{2}+4 by Ax+B.
Ax^{3}+x^{2}B+4Ax+4B=x^{3}
Swap sides so that all variable terms are on the left hand side.
Ax^{3}+4Ax+4B=x^{3}-x^{2}B
Subtract x^{2}B from both sides.
Ax^{3}+4Ax=x^{3}-x^{2}B-4B
Subtract 4B from both sides.
Ax^{3}+4Ax=x^{3}-Bx^{2}-4B
Reorder the terms.
\left(x^{3}+4x\right)A=x^{3}-Bx^{2}-4B
Combine all terms containing A.
\frac{\left(x^{3}+4x\right)A}{x^{3}+4x}=\frac{x^{3}-Bx^{2}-4B}{x^{3}+4x}
Divide both sides by x^{3}+4x.
A=\frac{x^{3}-Bx^{2}-4B}{x^{3}+4x}
Dividing by x^{3}+4x undoes the multiplication by x^{3}+4x.
A=\frac{x^{3}-Bx^{2}-4B}{x\left(x^{2}+4\right)}
Divide x^{3}-Bx^{2}-4B by x^{3}+4x.
x^{3}=\left(x^{2}+4\right)\left(Ax+B\right)
Multiply both sides of the equation by \left(x^{2}+4\right)^{2}, the least common multiple of \left(x^{2}+4\right)^{2},x^{2}+4.
x^{3}=Ax^{3}+x^{2}B+4Ax+4B
Use the distributive property to multiply x^{2}+4 by Ax+B.
Ax^{3}+x^{2}B+4Ax+4B=x^{3}
Swap sides so that all variable terms are on the left hand side.
x^{2}B+4Ax+4B=x^{3}-Ax^{3}
Subtract Ax^{3} from both sides.
x^{2}B+4B=x^{3}-Ax^{3}-4Ax
Subtract 4Ax from both sides.
Bx^{2}+4B=-Ax^{3}+x^{3}-4Ax
Reorder the terms.
\left(x^{2}+4\right)B=-Ax^{3}+x^{3}-4Ax
Combine all terms containing B.
\frac{\left(x^{2}+4\right)B}{x^{2}+4}=\frac{x\left(-Ax^{2}+x^{2}-4A\right)}{x^{2}+4}
Divide both sides by x^{2}+4.
B=\frac{x\left(-Ax^{2}+x^{2}-4A\right)}{x^{2}+4}
Dividing by x^{2}+4 undoes the multiplication by x^{2}+4.