Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+3\right)x^{2}}{x\left(x-10\right)\left(x+4\right)}\times \frac{x^{2}-16}{x^{2}-x-12}
Factor the expressions that are not already factored in \frac{x^{3}+3x^{2}}{x^{3}-6x^{2}-40x}.
\frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)}\times \frac{x^{2}-16}{x^{2}-x-12}
Cancel out x in both numerator and denominator.
\frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)}\times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}-16}{x^{2}-x-12}.
\frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)}\times \frac{x+4}{x+3}
Cancel out x-4 in both numerator and denominator.
\frac{x\left(x+3\right)\left(x+4\right)}{\left(x-10\right)\left(x+4\right)\left(x+3\right)}
Multiply \frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)} times \frac{x+4}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{x-10}
Cancel out \left(x+3\right)\left(x+4\right) in both numerator and denominator.
\frac{\left(x+3\right)x^{2}}{x\left(x-10\right)\left(x+4\right)}\times \frac{x^{2}-16}{x^{2}-x-12}
Factor the expressions that are not already factored in \frac{x^{3}+3x^{2}}{x^{3}-6x^{2}-40x}.
\frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)}\times \frac{x^{2}-16}{x^{2}-x-12}
Cancel out x in both numerator and denominator.
\frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)}\times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}-16}{x^{2}-x-12}.
\frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)}\times \frac{x+4}{x+3}
Cancel out x-4 in both numerator and denominator.
\frac{x\left(x+3\right)\left(x+4\right)}{\left(x-10\right)\left(x+4\right)\left(x+3\right)}
Multiply \frac{x\left(x+3\right)}{\left(x-10\right)\left(x+4\right)} times \frac{x+4}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{x-10}
Cancel out \left(x+3\right)\left(x+4\right) in both numerator and denominator.