Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{2}y^{2}+3xy\right)\left(2x+1\right)}{\left(4x^{2}-1\right)\left(xy+3\right)}
Divide \frac{x^{2}y^{2}+3xy}{4x^{2}-1} by \frac{xy+3}{2x+1} by multiplying \frac{x^{2}y^{2}+3xy}{4x^{2}-1} by the reciprocal of \frac{xy+3}{2x+1}.
\frac{xy\left(2x+1\right)\left(xy+3\right)}{\left(2x-1\right)\left(2x+1\right)\left(xy+3\right)}
Factor the expressions that are not already factored.
\frac{xy}{2x-1}
Cancel out \left(2x+1\right)\left(xy+3\right) in both numerator and denominator.
\frac{\left(x^{2}y^{2}+3xy\right)\left(2x+1\right)}{\left(4x^{2}-1\right)\left(xy+3\right)}
Divide \frac{x^{2}y^{2}+3xy}{4x^{2}-1} by \frac{xy+3}{2x+1} by multiplying \frac{x^{2}y^{2}+3xy}{4x^{2}-1} by the reciprocal of \frac{xy+3}{2x+1}.
\frac{xy\left(2x+1\right)\left(xy+3\right)}{\left(2x-1\right)\left(2x+1\right)\left(xy+3\right)}
Factor the expressions that are not already factored.
\frac{xy}{2x-1}
Cancel out \left(2x+1\right)\left(xy+3\right) in both numerator and denominator.