Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{x^{2}-y^{2}}{xy}-\frac{1}{x+y}\left(\frac{x^{2}x}{xy}-\frac{y^{2}y}{xy}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x^{2}}{y} times \frac{x}{x}. Multiply \frac{y^{2}}{x} times \frac{y}{y}.
\frac{x^{2}-y^{2}}{xy}-\frac{1}{x+y}\times \frac{x^{2}x-y^{2}y}{xy}
Since \frac{x^{2}x}{xy} and \frac{y^{2}y}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-y^{2}}{xy}-\frac{1}{x+y}\times \frac{x^{3}-y^{3}}{xy}
Do the multiplications in x^{2}x-y^{2}y.
\frac{x^{2}-y^{2}}{xy}-\frac{x^{3}-y^{3}}{\left(x+y\right)xy}
Multiply \frac{1}{x+y} times \frac{x^{3}-y^{3}}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x+y\right)}{xy\left(x+y\right)}-\frac{x^{3}-y^{3}}{xy\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and \left(x+y\right)xy is xy\left(x+y\right). Multiply \frac{x^{2}-y^{2}}{xy} times \frac{x+y}{x+y}.
\frac{\left(x^{2}-y^{2}\right)\left(x+y\right)-\left(x^{3}-y^{3}\right)}{xy\left(x+y\right)}
Since \frac{\left(x^{2}-y^{2}\right)\left(x+y\right)}{xy\left(x+y\right)} and \frac{x^{3}-y^{3}}{xy\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+x^{2}y-y^{2}x-y^{3}-x^{3}+y^{3}}{xy\left(x+y\right)}
Do the multiplications in \left(x^{2}-y^{2}\right)\left(x+y\right)-\left(x^{3}-y^{3}\right).
\frac{-y^{2}x+x^{2}y}{xy\left(x+y\right)}
Combine like terms in x^{3}+x^{2}y-y^{2}x-y^{3}-x^{3}+y^{3}.
\frac{xy\left(x-y\right)}{xy\left(x+y\right)}
Factor the expressions that are not already factored in \frac{-y^{2}x+x^{2}y}{xy\left(x+y\right)}.
\frac{x-y}{x+y}
Cancel out xy in both numerator and denominator.
\frac{x^{2}-y^{2}}{xy}-\frac{1}{x+y}\left(\frac{x^{2}x}{xy}-\frac{y^{2}y}{xy}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x^{2}}{y} times \frac{x}{x}. Multiply \frac{y^{2}}{x} times \frac{y}{y}.
\frac{x^{2}-y^{2}}{xy}-\frac{1}{x+y}\times \frac{x^{2}x-y^{2}y}{xy}
Since \frac{x^{2}x}{xy} and \frac{y^{2}y}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-y^{2}}{xy}-\frac{1}{x+y}\times \frac{x^{3}-y^{3}}{xy}
Do the multiplications in x^{2}x-y^{2}y.
\frac{x^{2}-y^{2}}{xy}-\frac{x^{3}-y^{3}}{\left(x+y\right)xy}
Multiply \frac{1}{x+y} times \frac{x^{3}-y^{3}}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x+y\right)}{xy\left(x+y\right)}-\frac{x^{3}-y^{3}}{xy\left(x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and \left(x+y\right)xy is xy\left(x+y\right). Multiply \frac{x^{2}-y^{2}}{xy} times \frac{x+y}{x+y}.
\frac{\left(x^{2}-y^{2}\right)\left(x+y\right)-\left(x^{3}-y^{3}\right)}{xy\left(x+y\right)}
Since \frac{\left(x^{2}-y^{2}\right)\left(x+y\right)}{xy\left(x+y\right)} and \frac{x^{3}-y^{3}}{xy\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+x^{2}y-y^{2}x-y^{3}-x^{3}+y^{3}}{xy\left(x+y\right)}
Do the multiplications in \left(x^{2}-y^{2}\right)\left(x+y\right)-\left(x^{3}-y^{3}\right).
\frac{-y^{2}x+x^{2}y}{xy\left(x+y\right)}
Combine like terms in x^{3}+x^{2}y-y^{2}x-y^{3}-x^{3}+y^{3}.
\frac{xy\left(x-y\right)}{xy\left(x+y\right)}
Factor the expressions that are not already factored in \frac{-y^{2}x+x^{2}y}{xy\left(x+y\right)}.
\frac{x-y}{x+y}
Cancel out xy in both numerator and denominator.