Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{2}-x-6\right)\left(x^{2}-x-2\right)}{\left(x-2\right)\left(x^{2}-4x\right)}\times \frac{x-4}{x^{2}+x}
Divide \frac{x^{2}-x-6}{x-2} by \frac{x^{2}-4x}{x^{2}-x-2} by multiplying \frac{x^{2}-x-6}{x-2} by the reciprocal of \frac{x^{2}-4x}{x^{2}-x-2}.
\frac{\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{x\left(x-4\right)\left(x-2\right)}\times \frac{x-4}{x^{2}+x}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x-6\right)\left(x^{2}-x-2\right)}{\left(x-2\right)\left(x^{2}-4x\right)}.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{x\left(x-4\right)}\times \frac{x-4}{x^{2}+x}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x-4\right)}{x\left(x-4\right)\left(x^{2}+x\right)}
Multiply \frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{x\left(x-4\right)} times \frac{x-4}{x^{2}+x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{x\left(x^{2}+x\right)}
Cancel out x-4 in both numerator and denominator.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)x^{2}}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+2\right)}{x^{2}}
Cancel out x+1 in both numerator and denominator.
\frac{x^{2}-x-6}{x^{2}}
Expand the expression.
\frac{\left(x^{2}-x-6\right)\left(x^{2}-x-2\right)}{\left(x-2\right)\left(x^{2}-4x\right)}\times \frac{x-4}{x^{2}+x}
Divide \frac{x^{2}-x-6}{x-2} by \frac{x^{2}-4x}{x^{2}-x-2} by multiplying \frac{x^{2}-x-6}{x-2} by the reciprocal of \frac{x^{2}-4x}{x^{2}-x-2}.
\frac{\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x+2\right)}{x\left(x-4\right)\left(x-2\right)}\times \frac{x-4}{x^{2}+x}
Factor the expressions that are not already factored in \frac{\left(x^{2}-x-6\right)\left(x^{2}-x-2\right)}{\left(x-2\right)\left(x^{2}-4x\right)}.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{x\left(x-4\right)}\times \frac{x-4}{x^{2}+x}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x-4\right)}{x\left(x-4\right)\left(x^{2}+x\right)}
Multiply \frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{x\left(x-4\right)} times \frac{x-4}{x^{2}+x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{x\left(x^{2}+x\right)}
Cancel out x-4 in both numerator and denominator.
\frac{\left(x-3\right)\left(x+1\right)\left(x+2\right)}{\left(x+1\right)x^{2}}
Factor the expressions that are not already factored.
\frac{\left(x-3\right)\left(x+2\right)}{x^{2}}
Cancel out x+1 in both numerator and denominator.
\frac{x^{2}-x-6}{x^{2}}
Expand the expression.