Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+1\right)\left(x^{2}-x-2\right)\times \frac{x}{x+1}=0
Variable x cannot be equal to any of the values -3,-1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+1\right)\left(x+3\right)^{2}, the least common multiple of \left(x+3\right)^{2}\left(x-2\right),x+1.
\frac{\left(x+1\right)x}{x+1}\left(x^{2}-x-2\right)=0
Express \left(x+1\right)\times \frac{x}{x+1} as a single fraction.
\frac{\left(x+1\right)x}{x+1}x^{2}-\frac{\left(x+1\right)x}{x+1}x-2\times \frac{\left(x+1\right)x}{x+1}=0
Use the distributive property to multiply \frac{\left(x+1\right)x}{x+1} by x^{2}-x-2.
\frac{x^{2}+x}{x+1}x^{2}-\frac{\left(x+1\right)x}{x+1}x-2\times \frac{\left(x+1\right)x}{x+1}=0
Use the distributive property to multiply x+1 by x.
\frac{\left(x^{2}+x\right)x^{2}}{x+1}-\frac{\left(x+1\right)x}{x+1}x-2\times \frac{\left(x+1\right)x}{x+1}=0
Express \frac{x^{2}+x}{x+1}x^{2} as a single fraction.
\frac{\left(x^{2}+x\right)x^{2}}{x+1}-\frac{x^{2}+x}{x+1}x-2\times \frac{\left(x+1\right)x}{x+1}=0
Use the distributive property to multiply x+1 by x.
\frac{\left(x^{2}+x\right)x^{2}}{x+1}-\frac{\left(x^{2}+x\right)x}{x+1}-2\times \frac{\left(x+1\right)x}{x+1}=0
Express \frac{x^{2}+x}{x+1}x as a single fraction.
\frac{\left(x^{2}+x\right)x^{2}}{x+1}-\frac{\left(x^{2}+x\right)x}{x+1}-2\times \frac{x^{2}+x}{x+1}=0
Use the distributive property to multiply x+1 by x.
\frac{\left(x^{2}+x\right)x^{2}}{x+1}-\frac{\left(x^{2}+x\right)x}{x+1}+\frac{-2\left(x^{2}+x\right)}{x+1}=0
Express -2\times \frac{x^{2}+x}{x+1} as a single fraction.
\frac{\left(x^{2}+x\right)x^{2}-\left(x^{2}+x\right)x}{x+1}+\frac{-2\left(x^{2}+x\right)}{x+1}=0
Since \frac{\left(x^{2}+x\right)x^{2}}{x+1} and \frac{\left(x^{2}+x\right)x}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}+x^{3}-x^{3}-x^{2}}{x+1}+\frac{-2\left(x^{2}+x\right)}{x+1}=0
Do the multiplications in \left(x^{2}+x\right)x^{2}-\left(x^{2}+x\right)x.
\frac{x^{4}-x^{2}}{x+1}+\frac{-2\left(x^{2}+x\right)}{x+1}=0
Combine like terms in x^{4}+x^{3}-x^{3}-x^{2}.
\frac{x^{4}-x^{2}-2\left(x^{2}+x\right)}{x+1}=0
Since \frac{x^{4}-x^{2}}{x+1} and \frac{-2\left(x^{2}+x\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{x^{4}-x^{2}-2x^{2}-2x}{x+1}=0
Do the multiplications in x^{4}-x^{2}-2\left(x^{2}+x\right).
\frac{x^{4}-3x^{2}-2x}{x+1}=0
Combine like terms in x^{4}-x^{2}-2x^{2}-2x.
x^{4}-3x^{2}-2x=0
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
t^{2}-3t-2=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-2\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and -2 for c in the quadratic formula.
t=\frac{3±\sqrt{17}}{2}
Do the calculations.
t=\frac{\sqrt{17}+3}{2} t=\frac{3-\sqrt{17}}{2}
Solve the equation t=\frac{3±\sqrt{17}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{17}+6}}{2} x=-\frac{\sqrt{2\sqrt{17}+6}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.